An Integral Framework of Task Assignment and Path Planning for Multiple Unmanned Aerial Vehicles in Dynamic Environments

2012 ◽  
Vol 70 (1-4) ◽  
pp. 303-313 ◽  
Author(s):  
Sangwoo Moon ◽  
Eunmi Oh ◽  
David Hyunchul Shim
Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 443 ◽  
Author(s):  
Zhe Zhao ◽  
Jian Yang ◽  
Yifeng Niu ◽  
Yu Zhang ◽  
Lincheng Shen

In this paper, the cooperative multi-task online mission planning for multiple Unmanned Aerial Vehicles (UAVs) is studied. Firstly, the dynamics of unmanned aerial vehicles and the mission planning problem are studied. Secondly, a hierarchical mechanism is proposed to deal with the complex multi-UAV multi-task mission planning problem. In the first stage, the flight paths of UAVs are generated by the Dubins curve and B-spline mixed method, which are defined as “CBC)” curves, where “C” stands for circular arc and “B” stands for B-spline segment. In the second stage, the task assignment problem is solved as multi-base multi-traveling salesman problem, in which the “CBC” flight paths are used to estimate the trajectory costs. In the third stage, the flight trajectories of UAVs are generated by using Gaussian pseudospectral method (GPM). Thirdly, to improve the computational efficiency, the continuous and differential initial trajectories are generated based on the “CBC” flight paths. Finally, numerical simulations are presented to demonstrate the proposed approach, the designed initial solution search algorithm is compared with existing methods. These results indicate that the proposed hierarchical mission planning method can produce satisfactory mission planning results efficiently.


2014 ◽  
Vol 668-669 ◽  
pp. 388-393 ◽  
Author(s):  
Xiao Ming Cheng ◽  
Dong Cao ◽  
Chun Tao Li

As an important part of cooperative control for multiple unmanned aerial vehicles (UAVs), cooperative path planning can get optimal flight path which can satisfy different constraints. Research on cooperative path planning for multiple UAVs is summarized in this paper. Firstly, problem description and constraints are given. Then, solution frameworks and path coordination approaches are summarized. After that, several control methods commonly used in formation of multiple UAVs are introduced respectively. Lastly, possible research directions in the future time are put forward.


Sign in / Sign up

Export Citation Format

Share Document