2012 ◽  
Vol 55 (11) ◽  
pp. 2604-2610 ◽  
Author(s):  
Feng Shu ◽  
JunHui Zhao ◽  
XiaoHu You ◽  
Mao Wang ◽  
Qian Chen ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 842
Author(s):  
Olutayo Oyeyemi Oyerinde ◽  
Adam Flizikowski ◽  
Tomasz Marciniak

The channel of the broadband wireless communications system can be modeled as a dynamic sparse channel. Such a channel is difficult to reconstruct by using linear channel estimators that are normally employed for dense channels’ estimation because of their lack of capacity to use the inherent channel’s sparsity. This paper focuses on reconstructing this type of time-varying sparse channel by extending a recently proposed dynamic channel estimator. Specifically, variable step size’s mechanism and variable momentum parameter are incorporated into traditional Iterative Hard Thresholding-based channel estimator to develop the proposed Iterative Hard Thresholding with Combined Variable Step Size and Momentum (IHT-wCVSSnM)-based estimator. Computer simulations carried out in the context of a wireless communication system operating in a dynamic sparse channel, show that the proposed IHT-wCVSSnM-based estimator performs better than all the other estimators significantly. However, the computational complexity cost of the proposed estimator is slightly higher than the closely performing channel estimator. Nevertheless, the inherent complexity cost of the proposed estimator could be compromised in a situation where the system’s performance is of higher priority when compared with the computational complexity cost.


2019 ◽  
Vol 35 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Dorota Reis

Abstract. Interoception is defined as an iterative process that refers to receiving, accessing, appraising, and responding to body sensations. Recently, following an extensive process of development, Mehling and colleagues (2012) proposed a new instrument, the Multidimensional Assessment of Interoceptive Awareness (MAIA), which captures these different aspects of interoception with eight subscales. The aim of this study was to reexamine the dimensionality of the MAIA by applying maximum likelihood confirmatory factor analysis (ML-CFA), exploratory structural equation modeling (ESEM), and Bayesian structural equation modeling (BSEM). ML-CFA, ESEM, and BSEM were examined in a sample of 320 German adults. ML-CFA showed a poor fit to the data. ESEM yielded a better fit and contained numerous significant cross-loadings, of which one was substantial (≥ .30). The BSEM model with approximate zero informative priors yielded an excellent fit and confirmed the substantial cross-loading found in ESEM. The study demonstrates that ESEM and BSEM are flexible techniques that can be used to improve our understanding of multidimensional constructs. In addition, BSEM can be seen as less exploratory than ESEM and it might also be used to overcome potential limitations of ESEM with regard to more complex models relative to the sample size.


2009 ◽  
Vol E92-B (7) ◽  
pp. 2520-2524
Author(s):  
Guomei ZHANG ◽  
Shihua ZHU ◽  
Shaopeng WANG ◽  
Feng LI
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document