Atomic Norm Minimization Methods for Continuous DOA estimation in Colored Noise

Author(s):  
Yuying Zhang ◽  
Gong Zhang ◽  
Henry Leung
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Ming-Ming Liu ◽  
Chun-Xi Dong ◽  
Yang-Yang Dong ◽  
Guo-Qing Zhao

This paper proposes a superresolution two-dimensional (2D) direction of arrival (DOA) estimation algorithm for a rectangular array based on the optimization of the atomic l0 norm and a series of relaxation formulations. The atomic l0 norm of the array response describes the minimum number of sources, which is derived from the atomic norm minimization (ANM) problem. However, the resolution is restricted and high computational complexity is incurred by using ANM for 2D angle estimation. Although an improved algorithm named decoupled atomic norm minimization (DAM) has a reduced computational burden, the resolution is still relatively low in terms of angle estimation. To overcome these limitations, we propose the direct minimization of the atomic l0 norm, which is demonstrated to be equivalent to a decoupled rank optimization problem in the positive semidefinite (PSD) form. Our goal is to solve this rank minimization problem and recover two decoupled Toeplitz matrices in which the azimuth-elevation angles of interest are encoded. Since rank minimization is an NP-hard problem, a novel sparse surrogate function is further proposed to effectively approximate the two decoupled rank functions. Then, the new optimization problem obtained through the above relaxation can be implemented via the majorization-minimization (MM) method. The proposed algorithm offers greatly improved resolution while maintaining the same computational complexity as the DAM algorithm. Moreover, it is possible to use a single snapshot for angle estimation without prior information on the number of sources, and the algorithm is robust to noise due to its iterative nature. In addition, the proposed surrogate function can achieve local convergence faster than existing functions.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 60827-60836 ◽  
Author(s):  
Wen-Gen Tang ◽  
Hong Jiang ◽  
Shuai-Xuan Pang

Author(s):  
Yarong Ding ◽  
Shiwei Ren ◽  
Weijiang Wang ◽  
Chengbo Xue

AbstractThe sum–difference coarray is the union of difference coarray and the sum coarray, which is capable to obtain a higher number of degrees of freedom (DOF) than the difference coarray. However, this method fails to use all information provided by the coprime array because of the existence of holes. In this paper, we introduce the virtual array interpolation into the sum–difference coarray domain. After interpolating the virtual array, we estimate the DOA by reconstructing the covariance matrix to resolve an atomic norm minimization problem in a gridless way. The proposed method is gridless and can effectively utilize the DOF of a larger virtual array. Numerical simulation results verify the effectiveness and the superior performance of the proposed algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2222
Author(s):  
Jie Pan ◽  
Fu Jiang

Beamspace processing has become much attractive in recent radar and wireless communication applications, since the advantages of complexity reduction and of performance improvements in array signal processing. In this paper, we concentrate on the beamspace DOA estimation of linear array via atomic norm minimization (ANM). The existed generalized linear spectrum estimation based ANM approaches suffer from the high computational complexity for large scale array, since their complexity depends upon the number of sensors. To deal with this problem, we develop a low dimensional semidefinite programming (SDP) implementation of beamspace atomic norm minimization (BS-ANM) approach for DFT beamspace based on the super resolution theory on the semi-algebraic set. Then, a computational efficient iteration algorithm is proposed based on alternating direction method of multipliers (ADMM) approach. We develop the covariance based DOA estimation methods via BS-ANM and apply the BS-ANM based DOA estimation method to the channel estimation problem for massive MIMO systems. Simulation results demonstrate that the proposed methods exhibit the superior performance compared to the state-of-the-art counterparts.


2021 ◽  
Author(s):  
Yarong Ding ◽  
Shiwei Ren ◽  
Weijiang Wang ◽  
Chengbo Xue

Abstract The sum-difference coarray is the union of difference coarray and the sum coarray, which is capable to obtain a higher number of degrees of freedom (DOF) than the difference coarray. However, this method fails to use all information provided by the coprime array because of the existence of holes. In this paper, we introduce the virtual array interpolation into the sum-difference coarray domain. After interpolating the virtual array, we estimate the DOA by reconstructing the covariance matrix to resolve an atomic norm minimization problem in a gridless way. The proposed method is gridless and can effectively utilize the DOF of a larger virtual array. Numerical simulation results verify the effectiveness and the superior performance of the proposed algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yu Zhang ◽  
Yinan Sun ◽  
Gong Zhang ◽  
Xinhai Wang ◽  
Yu Tao

A novel two-phase method for two-dimensional (2D) direction-of-arrival (DOA) estimation with L-shaped array based on decoupled atomic norm minimization (DANM) is proposed in this paper. In the first phase, given the sample crosscorrelation matrix, the gridless DANM technique considering the noise and finite snapshots effects is employed to exploit the structure and sparse properties of the crosscorrelation matrix. The resulting DANM-based algorithm not only enables the crosscorrelation matrix reconstruction (CCMR) but also reconstructs the covariance matrix of the L-shaped array. Hence, sequentially, in the second phase, the conventional 2D DOA estimators for the L-shaped array can be adopted for the angle estimation. With appropriate 2D DOA estimators, the resulting proposed algorithms can not only achieve better performance but also detect more source number, compared with conventional crosscorrelation-based DOA estimators. Moreover, the proposed method, termed CCMR-DANM, not only has blind characteristic that it does not require the prior information of source numbers but also is more efficient than the existing CCMR-based counterparts. Numerical simulations demonstrate the effectiveness and outperformance of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document