Finite State Predictive Torque Control with Switching Table for Induction Motors Fed by 3L-NPC Inverter

Author(s):  
Nguyen Hoang Viet ◽  
Nicolae PARASCHIV
Author(s):  
Sundram Ramahlingam ◽  
Auzani Bin Jidin ◽  
Azrita binti Alias ◽  
Logan Raj Lourdes Victor Raj ◽  
Atikah Binti Razi

Author(s):  
Mohamed Chebaani ◽  
Amar Goléa ◽  
Med Toufik Benchouia ◽  
Noureddine Goléa

Purpose Direct Torque Control (DTC) of induction motor drives is a well-established technique owing to features such as fast dynamic and insensibility to motor parameters. However, conventional DTC scheme, based on comparators and the switching table, suffers from large torque and flux ripples. To improve DTC performance, this study aims to propose and implement a sensorless finite-state predictive torque control using extended Kalman Filter in dSPACE environment. Design/methodology/approach This paper deals with the design of an extended Kalman filter for estimating the state of an induction motor model and for sensorless control of systems using this type of motor as an actuator. A complex-valued model is adopted that simultaneously allows a simpler observability analysis of the system and a more effective state estimation. Findings Simulation and experimental results reveal that the drive system, associated with this technique, can effectively reduce flux and torque ripples with better dynamic and steady state performance. Further, the proposed approach maintains a constant switching frequency. Originality/value The proposed speed observer have been developed and implemented experimentally under different operating conditions such as parameter variation, no-load/load disturbances and speed variations in different speed operation regions.


In these days, developments in the area of Induction Motor control is increasing significantly. Considerable advancements have been taken place in the area of Direct Torque Control (DTC), which is capable of providing quick dynamic response with respect to torque and flux. This paper presents a detailed survey on various latest techniques of DTC control of Induction Motor such as DTC-SVM with hysteresis band, DTCSVM with Model Predictive Control, DTC with sliding mode control, DTC with Model reference adaptive system (MRAS) et cetera. The simulation results are discussed for DTC-SVPWM topology and results obtained proves that this method has reduced torque ripple


Sign in / Sign up

Export Citation Format

Share Document