Another closed-form expression of average error rate for the Nth best relay selection AF relaying over Rayleigh fading channels

Author(s):  
Kyunbyoung Ko ◽  
Jeongtae Seo ◽  
Choongchae Woo
2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Zongsheng Zhang ◽  
Jinlong Wang ◽  
Qihui Wu ◽  
Xurong Pi

The outage performance with best relay selection is proposed for cognitive relay networks with multiple primary users in independent nonidentical distributed Nakagami-m fading channels. Specifically, we take the interference temperature and fading severity into consideration. Exact closed-form expression of outage probability is derived. Based on the exact closed-form expression, we can evaluate the impact of interference temperature, fading severity, number of relays, and number of primary users on the secondary network. Finally, the effects of fading severity, number of relays, number of primary users, and interference temperature on the system performance are examined through some representative numerical plots, and the Monte Carlo results match perfectly with theory results which validates our theory analysis.


Author(s):  
Vo Nguyen Quoc Bao ◽  
Vu Van San

In this paper, we propose a novel derivation approach to obtain the exact closed form expression of ergodic capacity for cognitive underlay amplify-and-forward (AF) relay networks over Rayleigh fading channels. Simulation results are performed to verify the analysis results. Numerical results are provided to compare the system performance of cognitive underlay amplify-and-forward relay networks under both cases of AF and decode-and-forward (DF) confirming that the system with DF provides better performance as compared with that with AF. DOI: 10.32913/rd-ict.vol3.no14.563


Sign in / Sign up

Export Citation Format

Share Document