A Registration Framework for Air-ground Point Cloud Maps

Author(s):  
Man Zhang ◽  
Yi Yang ◽  
Junbo Wang ◽  
Linzhe Shi ◽  
Yufeng Yue ◽  
...  
Keyword(s):  
Author(s):  
A. Nurunnabi ◽  
F. N. Teferle ◽  
J. Li ◽  
R. C. Lindenbergh ◽  
A. Hunegnaw

Abstract. Ground surface extraction is one of the classic tasks in airborne laser scanning (ALS) point cloud processing that is used for three-dimensional (3D) city modelling, infrastructure health monitoring, and disaster management. Many methods have been developed over the last three decades. Recently, Deep Learning (DL) has become the most dominant technique for 3D point cloud classification. DL methods used for classification can be categorized into end-to-end and non end-to-end approaches. One of the main challenges of using supervised DL approaches is getting a sufficient amount of training data. The main advantage of using a supervised non end-to-end approach is that it requires less training data. This paper introduces a novel local feature-based non end-to-end DL algorithm that generates a binary classifier for ground point filtering. It studies feature relevance, and investigates three models that are different combinations of features. This method is free from the limitations of point clouds’ irregular data structure and varying data density, which is the biggest challenge for using the elegant convolutional neural network. The new algorithm does not require transforming data into regular 3D voxel grids or any rasterization. The performance of the new method has been demonstrated through two ALS datasets covering urban environments. The method successfully labels ground and non-ground points in the presence of steep slopes and height discontinuity in the terrain. Experiments in this paper show that the algorithm achieves around 97% in both F1-score and model accuracy for ground point labelling.


Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 323 ◽  
Author(s):  
Gordana Jakovljevic ◽  
Miro Govedarica ◽  
Flor Alvarez-Taboada ◽  
Vladimir Pajic

Digital elevation model (DEM) has been frequently used for the reduction and management of flood risk. Various classification methods have been developed to extract DEM from point clouds. However, the accuracy and computational efficiency need to be improved. The objectives of this study were as follows: (1) to determine the suitability of a new method to produce DEM from unmanned aerial vehicle (UAV) and light detection and ranging (LiDAR) data, using a raw point cloud classification and ground point filtering based on deep learning and neural networks (NN); (2) to test the convenience of rebalancing datasets for point cloud classification; (3) to evaluate the effect of the land cover class on the algorithm performance and the elevation accuracy; and (4) to assess the usability of the LiDAR and UAV structure from motion (SfM) DEM in flood risk mapping. In this paper, a new method of raw point cloud classification and ground point filtering based on deep learning using NN is proposed and tested on LiDAR and UAV data. The NN was trained on approximately 6 million points from which local and global geometric features and intensity data were extracted. Pixel-by-pixel accuracy assessment and visual inspection confirmed that filtering point clouds based on deep learning using NN is an appropriate technique for ground classification and producing DEM, as for the test and validation areas, both ground and non-ground classes achieved high recall (>0.70) and high precision values (>0.85), which showed that the two classes were well handled by the model. The type of method used for balancing the original dataset did not have a significant influence in the algorithm accuracy, and it was suggested not to use any of them unless the distribution of the generated and real data set will remain the same. Furthermore, the comparisons between true data and LiDAR and a UAV structure from motion (UAV SfM) point clouds were analyzed, as well as the derived DEM. The root mean square error (RMSE) and the mean average error (MAE) of the DEM were 0.25 m and 0.05 m, respectively, for LiDAR data, and 0.59 m and –0.28 m, respectively, for UAV data. For all land cover classes, the UAV DEM overestimated the elevation, whereas the LIDAR DEM underestimated it. The accuracy was not significantly different in the LiDAR DEM for the different vegetation classes, while for the UAV DEM, the RMSE increased with the height of the vegetation class. The comparison of the inundation areas derived from true LiDAR and UAV data for different water levels showed that in all cases, the largest differences were obtained for the lowest water level tested, while they performed best for very high water levels. Overall, the approach presented in this work produced DEM from LiDAR and UAV data with the required accuracy for flood mapping according to European Flood Directive standards. Although LiDAR is the recommended technology for point cloud acquisition, a suitable alternative is also UAV SfM in hilly areas.


2020 ◽  
Vol 57 (2) ◽  
pp. 021107
Author(s):  
杨鹏 Yang Peng ◽  
刘德儿 Liu Deer ◽  
刘靖钰 Liu Jingyu ◽  
张荷苑 Zhang Heyuan

Author(s):  
S. M. Abdullah ◽  
M. Awrangjeb ◽  
G. Lu

Effective building detection and roof reconstruction has an influential demand over the remote sensing research community. In this paper, we present a new automatic LiDAR point cloud segmentation method using suitable seed points for building detection and roof plane extraction. Firstly, the LiDAR point cloud is separated into "ground" and "non-ground" points based on the analysis of DEM with a height threshold. Each of the non-ground point is marked as coplanar or non-coplanar based on a coplanarity analysis. Commencing from the maximum LiDAR point height towards the minimum, all the LiDAR points on each height level are extracted and separated into several groups based on 2D distance. From each group, lines are extracted and a coplanar point which is the nearest to the midpoint of each line is considered as a seed point. This seed point and its neighbouring points are utilised to generate the plane equation. The plane is grown in a region growing fashion until no new points can be added. A robust rule-based tree removal method is applied subsequently to remove planar segments on trees. Four different rules are applied in this method. Finally, the boundary of each object is extracted from the segmented LiDAR point cloud. The method is evaluated with six different data sets consisting hilly and densely vegetated areas. The experimental results indicate that the proposed method offers a high building detection and roof plane extraction rates while compared to a recently proposed method.


Author(s):  
C. L. Kang ◽  
M. M. Zong ◽  
Y. Cheng ◽  
F. Wang ◽  
T. N. Lu ◽  
...  

Abstract. With the development of airborne LiDAR, the use of LiDAR point cloud to construct DEM model is a hot topic in recent years. For the characteristics of time cloud filtering and poor validity, and the efficiency of non-ground point filtering is not high, the filtered point cloud has problems such as errors and leaks. This paper proposes a method of constructing DEM based on the point cloud filtering algorithm of airborne Lidar point cloud data considering special terrain. The experiment proves that the algorithm of this paper is effective for establishing DEM model, and the quality of DEM model is good.


2021 ◽  
Vol 5 (3) ◽  
pp. p39
Author(s):  
Chen Jinming

Environment perception is the basis of unmanned driving and obstacle detection is an important research area of environment perception technology. In order to quickly and accurately identify the obstacles in the direction of vehicle travel and obtain their location information, combined with the PCL (Point Cloud Library) function module, this paper designed a euclidean distance based Point Cloud clustering obstacle detection algorithm. Environmental information was obtained by 3D lidar, and ROI extraction, voxel filtering sampling, outlier point filtering, ground point cloud segmentation, Euclide clustering and other processing were carried out to achieve a complete PCL based 3D point cloud obstacle detection method. The experimental results show that the vehicle can effectively identify the obstacles in the area and obtain their location information.


2016 ◽  
Vol 136 (8) ◽  
pp. 1078-1084
Author(s):  
Shoichi Takei ◽  
Shuichi Akizuki ◽  
Manabu Hashimoto

2011 ◽  
Vol 70 (16) ◽  
pp. 1489-1499
Author(s):  
O. V. Moiseev ◽  
E. V. Belyakov ◽  
A. V. Yakovlev
Keyword(s):  

Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document