Defect tolerant implementations of feed-forward and recurrent neural networks

Author(s):  
P. Franzon ◽  
D. van den Bout ◽  
J. Paulos ◽  
T. Miller ◽  
W. Snyder ◽  
...  
1992 ◽  
Vol 03 (01) ◽  
pp. 83-101 ◽  
Author(s):  
D. Saad

The Minimal Trajectory (MINT) algorithm for training recurrent neural networks with a stable end point is based on an algorithmic search for the systems’ representations in the neighbourhood of the minimal trajectory connecting the input-output representations. The said representations appear to be the most probable set for solving the global perceptron problem related to the common weight matrix, connecting all representations of successive time steps in a recurrent discrete neural networks. The search for a proper set of system representations is aided by representation modification rules similar to those presented in our former paper,1 aimed to support contributing hidden and non-end-point representations while supressing non-contributing ones. Similar representation modification rules were used in other training methods for feed-forward networks,2–4 based on modification of the internal representations. A feed-forward version of the MINT algorithm will be presented in another paper.5 Once a proper set of system representations is chosen, the weight matrix is then modified accordingly, via the Perceptron Learning Rule (PLR) to obtain the proper input-output relation. Computer simulations carried out for the restricted cases of parity and teacher-net problems show rapid convergence of the algorithm in comparison with other existing algorithms, together with modest memory requirements.


2014 ◽  
Vol 24 (1) ◽  
pp. 165-181 ◽  
Author(s):  
Pawel Plawiak ◽  
Ryszard Tadeusiewicz

Abstract This paper presents two innovative evolutionary-neural systems based on feed-forward and recurrent neural networks used for quantitative analysis. These systems have been applied for approximation of phenol concentration. Their performance was compared against the conventional methods of artificial intelligence (artificial neural networks, fuzzy logic and genetic algorithms). The proposed systems are a combination of data preprocessing methods, genetic algorithms and the Levenberg-Marquardt (LM) algorithm used for learning feed forward and recurrent neural networks. The initial weights and biases of neural networks chosen by the use of a genetic algorithm are then tuned with an LM algorithm. The evaluation is made on the basis of accuracy and complexity criteria. The main advantage of proposed systems is the elimination of random selection of the network weights and biases, resulting in increased efficiency of the systems.


Sign in / Sign up

Export Citation Format

Share Document