Small-signal averaged model and carrier-based linear control of a new Sheppard-Taylor-based PFC

Author(s):  
H.Y. Kanaan ◽  
A. Hayek ◽  
K. Al-Haddad
2002 ◽  
Vol 8 (2) ◽  
pp. 261-276 ◽  
Author(s):  
Xiaogang Feng ◽  
Zhihong Ye ◽  
Fred C. Lee ◽  
Dushan Borojevic

PEBB (power electronics building block) systems are typical nonlinear systems. Under the conventional but still popular linear control design, the system stability margin varies from one operating point to another. This paper introduces a novel approach to monitoring the DC bus stability margin of a PEBB system online. At the steady state of the system, a small-signal perturbation current î p is injected into the DC bus, and the load-side response current î L is measured. By checking the validation |î L ( jw)| < |î p ( jw)|, the system stability margin can be examined. Experiments on a 48 V DC DPS demonstrate the proposed measurement approach. An implementation approach is also proposed for an 800 V DC PEBB-based testbed system.


Author(s):  
X Lin-Shi ◽  
J-M Retif ◽  
B Allard ◽  
H Morel

The bond graph technique is applied to model a boost converter in order to derive an averaged model. The obtained averaged model is non-ideal as it takes into account most of the converter non-linearities introduced by power semiconductor devices. An ideal averaged model of the converter can be deduced easily for computing a non-linear control law in a real-time control context. The current-mode control of the boost converter is considered. The zero dynamics are studied by both classical theory and the bond graph approach. A modified version of a conventional nonlinear control law is proposed in order to improve the dynamic behaviour and to reduce the sensitivity to control model errors. The non-ideal averaged model is used firstly for simulation analyses of the proposed control law and then for comparison with experimental results.


Sign in / Sign up

Export Citation Format

Share Document