scholarly journals Solar Energy and Its Purpose in Net-Zero Energy Building

Author(s):  
Mostafa Esmaeili Shayan

The Net Zero Energy Building is generally described as an extremely energy-efficient building in which the residual electricity demand is provided by renewable energy. Solar power is also regarded to be the most readily available and usable form of renewable electricity produced at the building site. In contrast, energy conservation is viewed as an influential national for achieving a building’s net zero energy status. This chapter aims to show the value of the synergy between energy conservation and solar energy transfer to NZEBs at the global and regional levels. To achieve these goals, both energy demand building and the potential supply of solar energy in buildings have been forecasted in various regions, climatic conditions, and types of buildings. Building energy consumption was evaluated based on a bottom-up energy model developed by 3CSEP and data inputs from the Bottom-Up Energy Analysis System (BUENAS) model under two scenarios of differing degrees of energy efficiency intention. The study results indicate that the acquisition of sustainable energy consumption is critical for solar-powered net zero energy buildings in various building styles and environments. The chapter calls for the value of government measures that incorporate energy conservation and renewable energy.

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Mohsen Mahdavi Adeli ◽  
Said Farahat ◽  
Faramarz Sarhaddi

Residential and commercial buildings consume approximately 60% of the world’s electricity. It is almost impossible to provide a general definition of thermal comfort, because the feeling of thermal comfort is affected by varying preferences and specific traits of the population living in different climate zones. Considering that no studies have been conducted on thermal satisfaction of net-zero energy buildings prior to this date, one of the objectives of the present study is to draw a comparison between the thermal parameters for evaluation of thermal comfort of a net-zero energy building occupants. In so doing, the given building for this study is first optimized for the target parameters of thermal comfort and energy consumption, and, hence, a net-zero energy building is formed. Subsequent to obtaining the acceptable thermal comfort range, the computational analyses required to determine the temperature for thermal comfort are carried out using the Computational Fluid Dynamics (CFD) model. The findings of this study demonstrate that to reach net-zero energy buildings, solar energy alone is not able to supply the energy consumption of buildings and other types of energy should also be used. Furthermore, it is observed that optimum thermal comfort is achieved in moderate seasons.


2019 ◽  
Vol 254 ◽  
pp. 113709 ◽  
Author(s):  
Xian Li ◽  
Alexander Lin ◽  
Chin-Huai Young ◽  
Yanjun Dai ◽  
Chi-Hwa Wang

2021 ◽  
Author(s):  
Mohammad Reza Bahrami

Zero Energy Building or Nearly Zero Energy Building or Net Zero Energy Building-roughly means the same thing. ZEB for short is a building that has approximately zero energy consumption. The Zero Energy Consumption does not literally mean that the building does not consume any energy at all, on the contrary it is based on conservation of energy law in Physics. In a nutshell the building also generates energy from renewable resources, which is not just used to meet energy requirements of the building, but the surplus energy is also transferred to a transmission station or other building. Thus, ZEB is achieved. Use of ZEB is very crucial to save non-renewable resources like coal which are used to generate electricity


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3450 ◽  
Author(s):  
Diana D’Agostino ◽  
Luigi Mele ◽  
Francesco Minichiello ◽  
Carlo Renno

Currently, ground source heat pump (GSHP) technology is being studied, as the use of the ground as a source of renewable energy allows significant energy savings to be obtained. Therefore, it is useful to quantify how these savings help to achieve the energy balance of a Net Zero Energy Building (NZEB) compared to an air source heat pump or a condensing boiler coupled to a chiller. This paper assesses how these savings affect the number of photovoltaic panels installed on the roof of a building to obtain the NZEB target. The study is conducted by dynamic simulation for a building used as a bed and breakfast, virtually placed in two Italian towns. The energy savings and reduction of CO2 emissions, the percentage of renewable energy used, and the photovoltaic surface needed are assessed. Finally, the discounted payback period is calculated. The results show that the GSHP, unlike the systems to which it is compared, allows an NZEB to be obtained by balancing yearly energy consumption with energy production systems which only use on-site renewable energy sources (by exploiting the surface available on the roof) for both of the climatic conditions considered. GSHP also allows primary energy requests equal to or less than 57 kWh/m2 to be obtained.


Author(s):  
Janar KALDER ◽  
Alo ALLIK ◽  
Hardi HÕIMOJA ◽  
Erkki JÕGI ◽  
Mart HOVI ◽  
...  

The article is concentrated on the energy storage problems arising from microgeneration in private households. The case study involves a small-scale wind and solar electricity production set in a net zero-energy building. Both the net zero-energy building and the microgeneration units are connected to an utility grid. The current article serves to confirm the hypothesis, that the self consumption is at its maximum with the annual 70/30 wind and solar energy mix of in favour of the wind. The maximal self consumption at no additional energy storage in a net zero-energy building is studied as well. Produced and consumed energies are equal, which satisfies the requirements for a net zero-energy building with the utility grid acting as an energy buffer. The consumed energy is used to operate a heat pump, heat up ventilation supply air, run ventilation fans, supplying non-shiftable loads (white goods, TV, lighting etc), heat up domestic hot water via heat pump. To express self consumption, we use the term of supply cover factor, which describes optimally the directly consumed energy in relationship to net consumption or production. In annual scale, the cover factors for a net zero-energy building are equal as the production and consumption are equal as well. Also, seasonal variations in self consumption are studied. According to study results, the annual maximal supply cover factor in a net zero-energy building is 0.375 with 70/30 wind/solar mix. Seasonally, the self consumption is at its maximum in summer when the supply cover factor equals to 0.49.


2019 ◽  
Vol 11 (23) ◽  
pp. 6631 ◽  
Author(s):  
Sakdirat Kaewunruen ◽  
Jessada Sresakoolchai ◽  
Lalida Kerinnonta

The concept of the Net Zero Energy Building (NZEB) has received more interest from researchers due to global warming concerns. This paper proposes to illustrate optional solutions to allow existing buildings to achieve NZEB goals. The aim of this study is to investigate factors that can improve existing building performance to be in line with the NZEB concept and be more sustainable. An existing townhouse in Washington, DC was chosen as the research target to study how to retrofit or reconstruct the design of a building according to the NZEB concept. The methodology of this research is modeling an existing townhouse to assess the current situation and creating optional models for improving energy efficiency of the townhouse in Revit and utilising renewable energy technology for energy supply. This residential building was modeled in three versions to compare changes in energy performance including improving thermal efficiency of building envelope, increasing thickness of the wall, and installing smart windows (switchable windows). These solutions can reduce energy and cost by approximately 8.16%, 10.16%, and 14.65%, respectively, compared to the original townhouse. Two renewable energy technologies that were considered in this research were photovoltaic and wind systems. The methods can be applied to reconstruct other existing buildings in the future.


Sign in / Sign up

Export Citation Format

Share Document