Design and implementation of an output feedback controller for the Cuk converter

Author(s):  
Satyajit Chincholkar ◽  
Chok-You Chan
2021 ◽  
Vol 10 (4) ◽  
pp. 0-0

This paper presents the mathematical design and implementation of a robust H_2 output feedback controller for the vertical nonlinear coupled-tank system. Considering the growth of the complicated chemical processes in industries in the last decades, the necessity for the controllers with high robustness and proficiency is demanded. Therefore, to overcome some deficiencies of classical controllers such as Proportional Integral (PI), the robust H_2 output feedback controller is proposed to control the liquid level of the coupled tank system benchmark. Because of the nonlinearity of the system and the interactions between two tanks, the behavior of the controller in terms of the performance and disturbance rejection is on the main scene. The Linear Matrix Inequalities (LMI) is used to derive the design procedure. The effectiveness of the proposed approach in the setpoint tracking is highlighted in comparison with the PI plus feedforward controller and the acceptable results are achieved.


2021 ◽  
Vol 10 (4) ◽  
pp. 1-12
Author(s):  
Jaffar Seyyed Esmaeili ◽  
Abdullah Başçi

This paper presents the mathematical design and implementation of a robust H_2 output feedback controller for the vertical nonlinear coupled-tank system. Considering the growth of the complicated chemical processes in industries in the last decades, the necessity for the controllers with high robustness and proficiency is demanded. Therefore, to overcome some deficiencies of classical controllers such as Proportional Integral (PI), the robust H_2 output feedback controller is proposed to control the liquid level of the coupled tank system benchmark. Because of the nonlinearity of the system and the interactions between two tanks, the behavior of the controller in terms of the performance and disturbance rejection is on the main scene. The Linear Matrix Inequalities (LMI) is used to derive the design procedure. The effectiveness of the proposed approach in the setpoint tracking is highlighted in comparison with the PI plus feedforward controller and the acceptable results are achieved.


Author(s):  
Kho Hie Kwee ◽  
Hardiansyah .

This paper addresses the design problem of robust H2 output feedback controller design for damping power system oscillations. Sufficient conditions for the existence of output feedback controllers with norm-bounded parameter uncertainties are given in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMI constraints is formulated to design the output feedback controller which minimizes an upper bound on the worst-case H2 norm for a range of admissible plant perturbations. The technique is illustrated with applications to the design of stabilizer for a single-machine infinite-bus (SMIB) power system. The LMI based control ensures adequate damping for widely varying system operating.


Sign in / Sign up

Export Citation Format

Share Document