Analytical Equivalent Circuit Model for Series-Compensated Wireless Power Transfer Systems

Author(s):  
D. Benatti ◽  
G. Migliazza ◽  
R. Fornari ◽  
E. Lorenzani ◽  
G. Buticchi
Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7277
Author(s):  
SangWook Park ◽  
Seungyoung Ahn

This study presents an equivalent circuit model for the analysis of wireless power transfer (WPT) through both electric and magnetic couplings using merely a resonant coupler. Moreover, the frequency split phenomenon, which occurs when transmitting couplers are near receiving couplers, is explained. This phenomenon was analyzed using simple circuit models derived via a mode decomposition technique. To verify the proposed method, a resonant coupler using mixed coupling was designed and its efficiency was compared with the result obtained using a commercial electromagnetic solver. The results of this study are expected to aid in designing various WPT couplers or sensor antennas by selecting electric, magnetic, or mixed couplings. Furthermore, the results of this study are expected to be applied to technologies that sense objects, or simultaneously transmit and receive information and power wirelessly.


2021 ◽  
Vol 12 (4) ◽  
pp. 191
Author(s):  
Xueying Wu ◽  
Mingxuan Mao

This paper proposes a copper foil electromagnetic coupler integrating inductance and capacitance and its wireless power transfer (WPT) system without additional compensation structure. Firstly, the equivalent circuit model of the integrated electromagnetic coupler is established, and the circuit model is simplified based on the circuit theory and mutual inductance coupling theory. The self-compensating characteristics of the coupler are utilized to analyze and design the relation between electrical parameters of the system, and the basic conditions of full resonance working of the system are given. The system’s performance is verified by simulation.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3260 ◽  
Author(s):  
Chengxin Luo ◽  
Dongyuan Qiu ◽  
Manhao Lin ◽  
Bo Zhang

In the multi-load wireless power transfer (WPT) system, the output power and transfer efficiency will drop significantly with the change of distance between transmitter and receiver. Power distribution among multiple loads is also a major challenge. In order to solve these problems, a novel multi-load WPT system based on parity–time symmetry (PT-WPT) is proposed in this paper. Firstly, the multi-load PT-WPT system is modeled based on the circuit model. Then, the transmission characteristics of the multi-load PT-WPT system are analyzed. It is found that constant output power with constant transfer efficiency can be maintained against the variation of coupling coefficient, and the power distribution relationship among loads is only related to the coupling coefficient. Further, power distribution under different coupling situations is analyzed in detail to meet different power demands. Finally, taking a dual-load PT-WPT system as an example, the system parameters are designed and the circuit simulation is carried out. The simulation results are consistent with the theoretical analysis, which shows that PT symmetry can be applied to the multi-load WPT system to achieve constant output power, constant transfer efficiency, and power distribution simultaneously.


Sign in / Sign up

Export Citation Format

Share Document