scholarly journals Circuit Model and Analysis of Multi-Load Wireless Power Transfer System Based on Parity-Time Symmetry

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3260 ◽  
Author(s):  
Chengxin Luo ◽  
Dongyuan Qiu ◽  
Manhao Lin ◽  
Bo Zhang

In the multi-load wireless power transfer (WPT) system, the output power and transfer efficiency will drop significantly with the change of distance between transmitter and receiver. Power distribution among multiple loads is also a major challenge. In order to solve these problems, a novel multi-load WPT system based on parity–time symmetry (PT-WPT) is proposed in this paper. Firstly, the multi-load PT-WPT system is modeled based on the circuit model. Then, the transmission characteristics of the multi-load PT-WPT system are analyzed. It is found that constant output power with constant transfer efficiency can be maintained against the variation of coupling coefficient, and the power distribution relationship among loads is only related to the coupling coefficient. Further, power distribution under different coupling situations is analyzed in detail to meet different power demands. Finally, taking a dual-load PT-WPT system as an example, the system parameters are designed and the circuit simulation is carried out. The simulation results are consistent with the theoretical analysis, which shows that PT symmetry can be applied to the multi-load WPT system to achieve constant output power, constant transfer efficiency, and power distribution simultaneously.

2021 ◽  
Vol 35 (11) ◽  
pp. 1368-1369
Author(s):  
Jiawei Ge ◽  
Hassan Eldeeb ◽  
Kun Liu ◽  
Jinping Kang ◽  
Haisen Zhao ◽  
...  

Accurate system resistance may lead to an obvious error between the simulated and the real efficiency of the system. This paper proposes an optimal range of coupling coefficient for ensuring the efficiency and the sufficient output power of the WPT (wireless power transfer) system. A 3-kW prototype WPT system is manufactured and the effectiveness of the optimal range of coupling coefficient is validated.


Author(s):  
Muhammad Muhaimin Mohd Taib ◽  
◽  
Asmarashid Ponniran ◽  

This study aims to increase the coupling coefficient of the coils and power transfer efficiency (PTE) of the wireless power transfer (WPT) system. WPT system has a severe issue with the PTE as the transfer distance between the transmitter and receiver increases. Therefore, the transmitter and receiver of the single-circular coil (CC-coil) need to be optimized in geometry to maintain high coupling at an optimum distance. Ferrite and aluminum shielding are also crucial on CC-coil optimization. Implementing the series-series (S-S) magnetic resonance compensation technique can increase the PTE of the WPT system. Therefore, the CC-coil is optimized using Ansys Electronics Desktop and co-simulated with the magnetic resonance circuit using Ansys Twin Builder. The results show that the CC-coils' coupling coefficient increased by 21.38% with the shielding implementation. The maximum optimum transfer distance of 37 mm for horizontal misalignment and 30 mm for vertical misalignment. Implementing the S-S magnetic resonance compensation technique can improve the PTE and output power of the WPT system. The power transmitted also varied with the transfer distance, which caused the system's variation of input impedance. Hence, it is essential to consider the coil design and compensation circuit to achieve high PTE and output power at a higher transfer distance.


Circuit World ◽  
2018 ◽  
Vol 44 (4) ◽  
pp. 171-177 ◽  
Author(s):  
Suqi Liu ◽  
Jianping Tan

Purpose The purpose of this paper is to study the wireless power transfer (WPT) system that always achieves the maximum output power at a fixed angular frequency using the dynamic impedance compensation and also the maximum transfer efficiency. Design/methodology/approach An efficient topology of the WPT system is proposed which states that the functions of the relay are transformed into the functions of the compensator in the three-coil WPT system. Findings Increasing the ratio of the frequency detuning factor of the compensator relative to the frequency detuning factor of the compensator also causes the curves of the normalized output power and the transfer efficiency to move toward the high frequency direction. Practical implications The scheme of the dynamic compensation for the WPT using a compensator is convenient to obtain the dynamic impedance compensation by adding or removing the capacitances or inductances from the compensator. Originality/value The functions of the relay are transformed into the functions of the compensator in the three-coil WPT system.


2017 ◽  
Vol 137 (4) ◽  
pp. 326-333
Author(s):  
Chiaki Nagai ◽  
Kenji Inukai ◽  
Masato Kobayashi ◽  
Tatsuya Tanaka ◽  
Kensho Abumi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1417
Author(s):  
Jung-Hoon Cho ◽  
Byoung-Hee Lee ◽  
Young-Joon Kim

Electronic devices usually operate in a variable loading condition and the power transfer efficiency of the accompanying wireless power transfer (WPT) method should be optimizable to a variable load. In this paper, a reconfigurable WPT technique is introduced to maximize power transfer efficiency in a weakly coupled, variable load wireless power transfer application. A series-series two-coil wireless power network with resonators at a frequency of 150 kHz is presented and, under a variable loading condition, a shunt capacitor element is added to compensate for a maximum efficiency state. The series capacitance element of the secondary resonator is tuned to form a resonance at 150 kHz for maximum power transfer. All the capacitive elements for the secondary resonators are equipped with reconfigurability. Regardless of the load resistance, this proposed approach is able to achieve maximum efficiency with constant power delivery and the power present at the load is only dependent on the input voltage at a fixed operating frequency. A comprehensive circuit model, calculation and experiment is presented to show that optimized power transfer efficiency can be met. A 50 W WPT demonstration is established to verify the effectiveness of this proposed approach.


Sign in / Sign up

Export Citation Format

Share Document