MoM-GEC combined with Floquet analysis to study scanned coupled almost periodic antenna arrays in massive MIMO for 5G generation and FMCW automotive radar applications

Author(s):  
B. Hamdi ◽  
T. Aguili
Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Hamdi Bilel ◽  
Aguili Taoufik

In this study, we introduce a new formulation based on Floquet (Fourier) spectral analysis combined with a spectral modulation technique (and its spatial form) to study strongly coupled sublattices predefined in the infinite and large finite extent of almost-periodic antenna arrays (e.g., metasurfaces). This analysis is very relevant for dense-massive-MIMO, intelligent-surfaces, 5G, and 6G applications (used for very small areas with a large number of elements such as millimeter and terahertz waves applications). The numerical method that is adopted to model the structure is the method of moments simplified by equivalent circuits MoM GEC. Other numerical methods (such as the ASM-array scanning method and the windowing Fourier method) used this analysis in their kernel to treat periodic and pseudo-periodic (or quasi-periodic) arrays.


Author(s):  
Hamdi Bilel ◽  
Aguili Taoufik

In this paper, we introduce a new formulation based on Floquet (Fourier) spectral analysis combined with a spectral modulation technique (and its spatial form) to study strongly coupled sublattices predefined in the infinite and large finite extent of almost periodic antenna arrays (e.g metasurfaces). This analysis is very relevant for dense massive MIMO, intelligent surfaces, 5G, and 6G applications (used for very small areas with a large number of elements such as millimeter and terahertz waves applications). The numerical method that is adopted to model the structure is the method of moments simplified by equivalent circuits MoM GEC. Other numerical methods (as the ASM array scanning method and windowing Fourier method) used this analysis in their kernel that to treat periodic and pseudo-periodic (or quasi-periodic) arrays.


Sign in / Sign up

Export Citation Format

Share Document