scholarly journals Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform

Author(s):  
Daniel J. C. Barbosa ◽  
Jaime Ramos ◽  
Carlos S. Lima
2015 ◽  
Vol 67 (6) ◽  
pp. 582-593 ◽  
Author(s):  
Hong Liu ◽  
Haijun Wei ◽  
Lidui Wei ◽  
Jingming Li ◽  
Zhiyuan Yang

Purpose – This study aims to use a deterministic tourist walk to build a system that can identify wear particles. Wear particles provide detailed information about the wear processes taking place between mechanical components. Identification of the type of wear particles by image processing and pattern recognition is key to effective online monitoring algorithm. There are three kinds of particles that are particularly difficult to distinguish: severe sliding wear particles, fatigue spall particles and laminar particles. Design/methodology/approach – In this study, an identification method is tested using the deterministic tourist walking (DTW) method. This study examined whether this algorithm can be used in particle identification. If it does, can it outperform the traditional texture analysis methods such as Discrete wavelet transform or co-occurrence matrix. Different parameters such as walk’s memory size, size of image samples, different inputting vectors and different classifiers were compared. Findings – The DTW algorithm showed promising result compared to traditional texture extraction methods: discrete wavelet transform and co-occurrence matrix. The DTW method offers a higher identification accuracy and a simple feature vector. A conclusion can be drawn that the DTW method is suited for particle identification and can be put into practical use in condition monitoring systems. Originality/value – This paper combined DTW algorithm with wear particle identification problem.


Informatica ◽  
2013 ◽  
Vol 24 (4) ◽  
pp. 657-675
Author(s):  
Jonas Valantinas ◽  
Deividas Kančelkis ◽  
Rokas Valantinas ◽  
Gintarė Viščiūtė

2020 ◽  
Vol 64 (3) ◽  
pp. 30401-1-30401-14 ◽  
Author(s):  
Chih-Hsien Hsia ◽  
Ting-Yu Lin ◽  
Jen-Shiun Chiang

Abstract In recent years, the preservation of handwritten historical documents and scripts archived by digitized images has been gradually emphasized. However, the selection of different thicknesses of the paper for printing or writing is likely to make the content of the back page seep into the front page. In order to solve this, a cost-efficient document image system is proposed. In this system, the authors use Adaptive Directional Lifting-Based Discrete Wavelet Transform to transform image data from spatial domain to frequency domain and perform on high and low frequencies, respectively. For low frequencies, the authors use local threshold to remove most background information. For high frequencies, they use modified Least Mean Square training algorithm to produce a unique weighted mask and perform convolution on original frequency, respectively. Afterward, Inverse Adaptive Directional Lifting-Based Discrete Wavelet Transform is performed to reconstruct the four subband images to a resulting image with original size. Finally, a global binarization method, Otsu’s method, is applied to transform a gray scale image to a binary image as the output result. The results show that the difference in operation time of this work between a personal computer (PC) and Raspberry Pi is little. Therefore, the proposed cost-efficient document image system which performed on Raspberry Pi embedded platform has the same performance and obtains the same results as those performed on a PC.


Sign in / Sign up

Export Citation Format

Share Document