scholarly journals Adaptive shared control strategies based in the Bayesian recursive technique in an intelligent wheelchair

Author(s):  
H.T. Trieu ◽  
K. Willey ◽  
H.T. Nguyen
2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Gerolf Vanacker ◽  
José del R. Millán ◽  
Eileen Lew ◽  
Pierre W. Ferrez ◽  
Ferran Galán Moles ◽  
...  

Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair.


2016 ◽  
Vol 41 (3) ◽  
pp. 539-554 ◽  
Author(s):  
Pooja Viswanathan ◽  
Ellen P. Zambalde ◽  
Geneviève Foley ◽  
Julianne L. Graham ◽  
Rosalie H. Wang ◽  
...  

2021 ◽  
pp. 027836492110176
Author(s):  
Walid Amanhoud ◽  
Jacob Hernandez Sanchez ◽  
Mohamed Bouri ◽  
Aude Billard

In industrial or surgical settings, to achieve many tasks successfully, at least two people are needed. To this end, robotic assistance could be used to enable a single person to perform such tasks alone, with the help of robots through direct, shared, or autonomous control. We are interested in four-arm manipulation scenarios, where both feet are used to control two robotic arms via bi-pedal haptic interfaces. The robotic arms complement the tasks of the biological arms, for instance, in supporting and moving an object while working on it (using both hands). To reduce fatigue, cognitive workload, and to ease the execution of the foot manipulation, we propose two types of assistance that can be enabled upon contact with the object (i.e., based on the interaction forces): autonomous-contact force generation and auto-coordination of the robotic arms. The latter relates to controlling both arms with a single foot, once the object is grasped. We designed four (shared) control strategies that are derived from the combinations (absence/presence) of both assistance modalities, and we compared them through a user study (with 12 participants) on a four-arm manipulation task. The results show that force assistance positively improves human–robot fluency in the four-arm task, the ease of use and usefulness; it also reduces the fatigue. Finally, to make the dual-assistance approach the preferred and most successful among the proposed control strategies, delegating the grasping force to the robotic arms is a crucial factor when controlling them both with a single foot.


2021 ◽  
Author(s):  
Siyi Du ◽  
Fei Wang ◽  
Guilin Zhou ◽  
Jiaqi Li ◽  
Lintao Yang ◽  
...  

2017 ◽  
Author(s):  
Kelly N. Clark ◽  
Nicole B. Dorio ◽  
Michelle K. Demaray ◽  
Christine K. Malecki

Sign in / Sign up

Export Citation Format

Share Document