A permanent magnet synchronous generator for a small scale vertical axis wind turbine

Author(s):  
N. Madani ◽  
A. Cosic ◽  
C. Sadarangani
2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
F. Ottermo ◽  
S. Eriksson ◽  
H. Bernhoff

Strategies for parking a vertical axis wind turbine at storm load are considered. It is proposed that if a directly driven permanent magnet synchronous generator is used, an elegant choice is to short-circuit the generator at storm, since this makes the turbine efficiently damped. Nondamped braking is found to be especially problematic for the case of two blades where torsional oscillations may imply thrust force oscillations within a range of frequencies.


2014 ◽  
Vol 492 ◽  
pp. 113-117 ◽  
Author(s):  
M. Shahrukh Adnan Khan ◽  
Rajprasad K. Rajkumar ◽  
Rajparthiban K. Rajkumar ◽  
C.V. Aravind

The paper presents a new Vertical Axis Wind Turbine (VAWT) design by using magnetic levitation (Maglev) and Permanent Magnet Synchronous Generator (PMSG). A lab prototype of VAWT was built which was run at low wind speed of around 3 to 5 meter per second. The bearing was replaced by Neodymium Magnet to avoid the friction which in turns reduces the losses and increase the efficiency. A Prototype version of PMSG was built which could generate voltage from the turbine even in low rotational speed. Suitable turbine blade angle was also determined using trial and error method.


2013 ◽  
Vol 446-447 ◽  
pp. 704-708 ◽  
Author(s):  
M. Shahrukh Adnan Khan ◽  
Rajprasad K. Rajkumar ◽  
Rajparthiban K. Rajkumar ◽  
C.V. Aravind

This paper focuses on developing an optimal system of Vertical Axis Wind Turbine (VAWT) for low wind speed. After studying the performance analysis of the turbine parameters for speeds less than 5 m/s, a realistic model was designed in Matlab/ Simulink that could produce suitable torque for low wind condition. The Multi-pole Axial Flux Permanent Magnet Synchronous Generator (PMSG) had been proven to be a good choice for this optimal design as it performed well enough to generate sufficient amount of voltage and power. The turbine design parameters such as the radius, height and wind speed were varied to observe the change in generator output voltage and power and based on that an optimal design for Permanent Magnet Synchronous Generator was proposed in this paper. The simulation results were tested with an actual Permanent Magnet Synchronous Generator in laboratory applying the optimized turbine parameters and were compared accordingly for error calculation. Lastly, future possibility of improvement and the limitations had been proposed to develop the system further.


2013 ◽  
Vol 446-447 ◽  
pp. 709-715 ◽  
Author(s):  
M. Shahrukh Adnan Khan ◽  
Rajprasad K. Rajkumar ◽  
Rajparthiban K. Rajkumar ◽  
C.V. Aravind

In this paper, the performances of all the three kinds of Axial type Multi-Pole Permanent Magnet Synchronous Generators (PMSG) namely Three-phase, Multi-phase or Five Phase and Double Stator fixed in Vertical Axis Wind Turbine (VAWT) were investigated and compared in order to get an optimal system. MATLAB/Simulink had been used to model and simulate the wind turbine system together with all the three types Permanent Magnet Generators. It was observed from the result that with the increasing number of pole in both low and high wind speed, the five phase generator produced more power than the other two generators. In general, it was observed that the responses of the Multi-phase generator at both high and low speed wind showed promising aspect towards the system followed by Dual Stator. But with the change of the variables such as wind velocity, turbine height, radius, area together with the generator pole pairs and stator resistance, the optimum system should be chosen by considering the trade-off between different configurations which were firmly analyzed and described in this paper.


Sign in / Sign up

Export Citation Format

Share Document