A Low-Complexity Layered Decoding Algorithm for LDPC Codes

Author(s):  
Wang Zhongxun ◽  
Mu Qing
2010 ◽  
Vol 32 (8) ◽  
pp. 1956-1960
Author(s):  
Kun Guo ◽  
Yong Hei ◽  
Yu-mei Zhou ◽  
Shu-shan Qiao

2011 ◽  
Vol 128-129 ◽  
pp. 7-10
Author(s):  
Zhong Xun Wang ◽  
Xing Cheng Wang ◽  
Fang Qiang Zhu

We researched BP decoding algorithm based on variable-to-check information residual for LDPC code (VC-RBP) in this paper. It is a dynamic scheduling belief propagation using residuals, and has some advantages,such as fast decoding, good performance, and low complexity. It is similar to residual belief propagation (RBP),but has some difference in computing the residual message. This paper further optimized the new algorithm on DSP of TMS320dm6446, and it is good for hardware implementation.


2018 ◽  
Vol 7 (03) ◽  
pp. 23781-23784
Author(s):  
Rajarshini Mishra

Low-density parity-check (LDPC) have been shown to have good error correcting performance approaching Shannon’s limit. Good error correcting performance enables efficient and reliable communication. However, a LDPC code decoding algorithm needs to be executed efficiently to meet cost , time, power and bandwidth requirements of target applications. Quasi-cyclic low-density parity-check (QC-LDPC) codes are an important subclass of LDPC codes that are known as one of the most effective error controlling methods. Quasi cyclic codes are known to possess some degree of regularity. Many important communication standards such as DVB-S2 and 802.16e use these codes. The proposed Optimized Min-Sum decoding algorithm performs very close to the Sum-Product decoding while preserving the main features of the Min-Sum decoding, that is low complexity and independence with respect to noise variance estimation errors.Proposed decoder is well matched for VLSI implementation and will be implemented on Xilinx FPGA family


Sign in / Sign up

Export Citation Format

Share Document