A Low Complexity Decoding Algorithm for NB-LDPC Codes over Quadratic Extension Fields

Author(s):  
V. B. Wijekoon ◽  
Emanuele Viterbo ◽  
Yi Hong
2011 ◽  
Vol 128-129 ◽  
pp. 7-10
Author(s):  
Zhong Xun Wang ◽  
Xing Cheng Wang ◽  
Fang Qiang Zhu

We researched BP decoding algorithm based on variable-to-check information residual for LDPC code (VC-RBP) in this paper. It is a dynamic scheduling belief propagation using residuals, and has some advantages,such as fast decoding, good performance, and low complexity. It is similar to residual belief propagation (RBP),but has some difference in computing the residual message. This paper further optimized the new algorithm on DSP of TMS320dm6446, and it is good for hardware implementation.


2018 ◽  
Vol 7 (03) ◽  
pp. 23781-23784
Author(s):  
Rajarshini Mishra

Low-density parity-check (LDPC) have been shown to have good error correcting performance approaching Shannon’s limit. Good error correcting performance enables efficient and reliable communication. However, a LDPC code decoding algorithm needs to be executed efficiently to meet cost , time, power and bandwidth requirements of target applications. Quasi-cyclic low-density parity-check (QC-LDPC) codes are an important subclass of LDPC codes that are known as one of the most effective error controlling methods. Quasi cyclic codes are known to possess some degree of regularity. Many important communication standards such as DVB-S2 and 802.16e use these codes. The proposed Optimized Min-Sum decoding algorithm performs very close to the Sum-Product decoding while preserving the main features of the Min-Sum decoding, that is low complexity and independence with respect to noise variance estimation errors.Proposed decoder is well matched for VLSI implementation and will be implemented on Xilinx FPGA family


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wentao Fu ◽  
Xilun Luo ◽  
Yuanfa Ji ◽  
Xiyan Sun

For the conventional extended min-sum (EMS) algorithm, all check nodes update their check-to-variable (C2V) messages in every iteration. Selected scheduling, which reduces the number of check nodes for message updating in one iteration, can effectively reduce the complexity of the decoding algorithm, but it also lead to some performance degradation. With the introduction of a metric based on node stability, we propose stability-based node-subset scheduling (SNS) for the EMS algorithm, which can improve the performance of node-subset scheduling (NS). Second, to further improve the decoding performance of SNS while maintaining low complexity, we propose the SNS-EMS algorithm with a subset-reset mechanism (RSNS-EMS) based on the abnormal stability found in the processing node subset, which will cause the estimated codeword to fail to converge. The RSNS-EMS algorithm enhances performance through a sliding window detection and reset mechanism, and it resets the elements in the processing node subset to force all check nodes to update new messages when abnormal stability is detected. The simulation results show that the proposed algorithm can reduce complexity by approximately 25% with negligible performance degradation.


2010 ◽  
Vol 14 (11) ◽  
pp. 1062-1064 ◽  
Author(s):  
Dayuan Zhao ◽  
Xiao Ma ◽  
Chao Chen ◽  
Baoming Bai

Sign in / Sign up

Export Citation Format

Share Document