Model-based understanding of uncertain observational data for oil spill tracking

Author(s):  
Jungfu Tsao ◽  
J. Wolter ◽  
Haojin Wang
2014 ◽  
Vol 2014 (1) ◽  
pp. 2228-2241
Author(s):  
Torstein Pedersen ◽  
Javier Perez ◽  
Jos Van Heseen

ABSTRACT A typical oil spill recovery vessel has been historically outfitted with an oil spill detection (OSD) radar. During an oil spill recovery operation, there is a dedicated operator who is responsible for interpreting information from the radar image. Industry developments over the last several years now require that an OSD radar automatically detect and track an oil spill. There are two primary needs driving this development. The first is that OSD systems and operations are becoming more sophisticated; automatic OSD aids for a more efficient oil spill operation where an operator's attention may be directed to a potential spill. The automatic OSD also aids a multi-sensor system; one such example is where an OSD radar is used to steer an IR camera to a candidate spill for more detailed evaluation or validation. The other primary driver for automatic OSD is for monitoring systems, which serve for early warning. Monitoring systems may be found along coastal installations or oil platforms. The automatic spill detection functionality of an OSD system may be implemented in different levels of sophistication. Perhaps the simplest configuration is one that uses fixed thresholds relative to the image for alarming whether a region in a radar image is a spill or not. The benefit of simple threshold detector is that it is easy to implement in software. The weakness is that it is prone to both lower overall detection rate and high false alarm rate. A more robust automatic spill detection method is one that treats it as an image-processing problem. The paper here presents a model based OSD. Generation of confidence maps is central to the method and provides an indication of the likelihood of oil. Inputs to the confidence maps come from multiple sources, several of which are based on uniquely constructed models. Among these is a histogram comparator, which scans a radar image and compares the data to reference models from real oil spills. A discussion of the methods used focuses on (a) the necessary steps prior to the confidence map construction, (b) how the confidence maps are layered with inputs, (c) how the information in the confidence maps is transitioned into the detection of oil, (d) and finally alarming.


2021 ◽  
Vol 37 (4) ◽  
Author(s):  
Renda Wang ◽  
Zhen Zhu ◽  
Wei Zhu ◽  
Xianping Fu ◽  
Shengwei Xing

2020 ◽  
Vol 636 ◽  
pp. A5
Author(s):  
F. Roelofs ◽  
M. Janssen ◽  
I. Natarajan ◽  
R. Deane ◽  
J. Davelaar ◽  
...  

Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images.


2009 ◽  
Vol 58 (5) ◽  
pp. 726-734 ◽  
Author(s):  
W.J. Guo ◽  
Y.X. Wang
Keyword(s):  

2020 ◽  
Vol 53 (2) ◽  
pp. 1517-1524
Author(s):  
Zak Hodgson ◽  
Iñaki Esnaola ◽  
Bryn Jones

Sign in / Sign up

Export Citation Format

Share Document