A very brief history of soft computing: Fuzzy Sets, artificial Neural Networks and Evolutionary Computation

Author(s):  
Rudolf Seising ◽  
Marco Elio Tabacchi
Author(s):  
Larbi Esmahi ◽  
Kristian Williamson ◽  
Elarbi Badidi

Fuzzy logic became the core of a different approach to computing. Whereas traditional approaches to computing were precise, or hard edged, fuzzy logic allowed for the possibility of a less precise or softer approach (Klir et al., 1995, pp. 212-242). An approach where precision is not paramount is not only closer to the way humans thought, but may be in fact easier to create as well (Jin, 2000). Thus was born the field of soft computing (Zadeh, 1994). Other techniques were added to this field, such as Artificial Neural Networks (ANN), and genetic algorithms, both modeled on biological systems. Soon it was realized that these tools could be combined, and by mixing them together, they could cover their respective weaknesses while at the same time generate something that is greater than its parts, or in short, creating synergy. Adaptive Neuro-fuzzy is perhaps the most prominent of these admixtures of soft computing technologies (Mitra et al., 2000). The technique was first created when artificial neural networks were modified to work with fuzzy logic, hence the Neuro-fuzzy name (Jang et al., 1997, pp. 1-7). This combination provides fuzzy systems with adaptability and the ability to learn. It was later shown that adaptive fuzzy systems could be created with other soft computing techniques, such as genetic algorithms (Yen et al., 1998, pp. 469-490), Rough sets (Pal et al., 2003; Jensen et al., 2004, Ang et al., 2005) and Bayesian networks (Muller et al., 1995), but the Neuro-fuzzy name was widely used, so it stayed. In this chapter we are using the most widely used terminology in the field. Neuro-fuzzy is a blanket description of a wide variety of tools and techniques used to combine any aspect of fuzzy logic with any aspect of artificial neural networks. For the most part, these combinations are just extensions of one technology or the other. For example, neural networks usually take binary inputs, but use weights that vary in value from 0 to 1. Adding fuzzy sets to ANN to convert a range of input values into values that can be used as weights is considered a Neuro-fuzzy solution. This chapter will pay particular interest to the sub-field where the fuzzy logic rules are modified by the adaptive aspect of the system. The next part of this chapter will be organized as follows: in section 1 we examine models and techniques used to combine fuzzy logic and neural networks together to create Neuro-fuzzy systems. Section 2 provides an overview of the main steps involved in the development of adaptive Neuro-fuzzy systems. Section 3 concludes this chapter with some recommendations and future developments.


Author(s):  
Bruce Vanstone ◽  
Gavin Finnie

Soft computing represents that area of computing adapted from the physical sciences. Artificial intelligence techniques within this realm attempt to solve problems by applying physical laws and processes. This style of computing is particularly tolerant of imprecision and uncertainty, making the approach attractive to those researching within “noisy” realms, where the signal-to-noise ratio is quite low. Soft computing is normally accepted to include the three key areas of fuzzy logic, artificial neural networks, and probabilistic reasoning (which include genetic algorithms, chaos theory, etc.). The arena of investment trading is one such field where there is an abundance of noisy data. It is in this area that traditional computing typically gives way to soft computing as the rigid conditions applied by traditional computing cannot be met. This is particularly evident where the same sets of input conditions may appear to invoke different outcomes, or there is an abundance of missing or poor quality data. Artificial neural networks (henceforth ANNs) are a particularly promising branch on the tree of soft computing, as they possess the ability to determine non-linear relationships, and are particularly adept at dealing with noisy datasets. From an investment point of view, ANNs are particularly attractive as they offer the possibility of achieving higher investment returns for two distinct reasons. Firstly, with the advent of cheaper computing power, many mathematical techniques have come to be in common use, effectively minimizing any advantage they had introduced (see Samuel & Malakkal, 1990). Secondly, in order to attempt to address the first issue, many techniques have become more complex. There is a real risk that the signal-to-noise ratio associated with such techniques may be becoming lower, particularly in the area of pattern recognition, as discussed by Blakey (2002). Investment and financial trading is normally divided into two major disciplines: fundamental analysis and technical analysis. Articles concerned with applying ANNs to these two disciplines are reviewed.


Author(s):  
Julián Dorado ◽  
Nieves Pedreira ◽  
Mónica Miguelez

This chapter presents the use of Artificial Neural Networks (ANN) and Evolutionary Computation (EC) techniques to solve real-world problems including those with a temporal component. The development of the ANN maintains some problems from the beginning of the ANN field that can be palliated applying EC to the development of ANN. In this chapter, we propose a multilevel system, based on each level in EC, to adjust the architecture and to train ANNs. Finally, the proposed system offers the possibility of adding new characteristics to the processing elements (PE) of the ANN without modifying the development process. This characteristic makes possible a faster convergence between natural and artificial neural networks.


Sign in / Sign up

Export Citation Format

Share Document