Automated Texture Extraction From High Spatial Resolution Satellite Imagery For Land-cover Classification: Concepts And Application

Author(s):  
D. Marceau ◽  
P.J. Howarth ◽  
J.M. Dubois
2020 ◽  
Vol 9 (8) ◽  
pp. 478 ◽  
Author(s):  
Zemin Han ◽  
Yuanyong Dian ◽  
Hao Xia ◽  
Jingjing Zhou ◽  
Yongfeng Jian ◽  
...  

Land cover is an important variable of the terrestrial ecosystem that provides information for natural resources management, urban sprawl detection, and environment research. To classify land cover with high-spatial-resolution multispectral remote sensing imagery is a difficult problem due to heterogeneous spectral values of the same object on the ground. Fully convolutional networks (FCNs) are a state-of-the-art method that has been increasingly used in image segmentation and classification. However, a systematic quantitative comparison of FCNs on high-spatial-multispectral remote imagery was not yet performed. In this paper, we adopted the three FCNs (FCN-8s, Segnet, and Unet) for Gaofen-2 (GF2) satellite imagery classification. Two scenes of GF2 with a total of 3329 polygon samples were used in the study area and a systematic quantitative comparison of FCNs was conducted with red, green, blue (RGB) and RGB+near infrared (NIR) inputs for GF2 satellite imagery. The results showed that: (1) The FCN methods perform well in land cover classification with GF2 imagery, and yet, different FCNs architectures exhibited different results in mapping accuracy. The FCN-8s model performed best among the Segnet and Unet architectures due to the multiscale feature channels in the upsampling stage. Averaged across the models, the overall accuracy (OA) and Kappa coefficient (Kappa) were 5% and 0.06 higher, respectively, in FCN-8s when compared with the other two models. (2) High-spatial-resolution remote sensing imagery with RGB+NIR bands performed better than RGB input at mapping land cover, and yet the advantage was limited; the OA and Kappa only increased an average of 0.4% and 0.01 in the RGB+NIR bands. (3) The GF2 imagery provided an encouraging result in estimating land cover based on the FCN-8s method, which can be exploited for large-scale land cover mapping in the future.


2020 ◽  
Author(s):  
Seungtaek Jeong ◽  
Jonghan Ko ◽  
Gwanyong Jeong ◽  
Myungjin Choi

<p>A satellite image-based classification for crop types can provide information on an arable land area and its changes over time. The classified information is also useful as a base dataset for various geospatial projects to retrieve crop growth and production processes for a wide area. Convolutional neural network (CNN) algorithms based on a deep neural network technique have been frequently applied for land cover classification using satellite images with a high spatial resolution, producing consistent classification outcomes. However, it is still challenging to adopt the coarse resolution images such as Moderate Resolution Imaging Spectroradiometer (MODIS) for classification purposes mainly because of uncertainty from mixed pixels, which can cause difficulty in collecting and labeling actual land cover data. Nevertheless, using coarse images is a very efficient approach for obtaining high temporal and continuous land spectral information for comparatively extensive areas (e.g., those at national and continental scales). In this study, we will classify paddy fields applying a CNN algorithm to MODIS images in Northeast Asia. Time series features of vegetation indices that appear only in paddy fields will be created as 2-dimensional images to use inputs for the classification algorithm. We will use reference land cover maps with a high spatial resolution in Korea and Japan as training and test datasets, employing identified data in person for validation. The current research effort would propose that the CNN-based classification approach using coarse spatial resolution images could have its applicability and reliability for the land cover classification process at a continental scale, providing a direction of its solution for the cause of errors in satellite images with a low spatial resolution.</p>


Sign in / Sign up

Export Citation Format

Share Document