Object-based land cover classification in high spatial resolution remote sensing imagery of mountain area, a case study in Miyun reservoir area

Author(s):  
Quanzhi Yuan ◽  
Bingfang Wu ◽  
Lei Zhang ◽  
Xiaosong Li ◽  
Qiang Xing
2020 ◽  
Vol 12 (1) ◽  
pp. 174
Author(s):  
Tianjun Wu ◽  
Jiancheng Luo ◽  
Ya’nan Zhou ◽  
Changpeng Wang ◽  
Jiangbo Xi ◽  
...  

Land cover (LC) information plays an important role in different geoscience applications such as land resources and ecological environment monitoring. Enhancing the automation degree of LC classification and updating at a fine scale by remote sensing has become a key problem, as the capability of remote sensing data acquisition is constantly being improved in terms of spatial and temporal resolution. However, the present methods of generating LC information are relatively inefficient, in terms of manually selecting training samples among multitemporal observations, which is becoming the bottleneck of application-oriented LC mapping. Thus, the objectives of this study are to speed up the efficiency of LC information acquisition and update. This study proposes a rapid LC map updating approach at a geo-object scale for high-spatial-resolution (HSR) remote sensing. The challenge is to develop methodologies for quickly sampling. Hence, the core step of our proposed methodology is an automatic method of collecting samples from historical LC maps through combining change detection and label transfer. A data set with Chinese Gaofen-2 (GF-2) HSR satellite images is utilized to evaluate the effectiveness of our method for multitemporal updating of LC maps. Prior labels in a historical LC map are certified to be effective in a LC updating task, which contributes to improve the effectiveness of the LC map update by automatically generating a number of training samples for supervised classification. The experimental outcomes demonstrate that the proposed method enhances the automation degree of LC map updating and allows for geo-object-based up-to-date LC mapping with high accuracy. The results indicate that the proposed method boosts the ability of automatic update of LC map, and greatly reduces the complexity of visual sample acquisition. Furthermore, the accuracy of LC type and the fineness of polygon boundaries in the updated LC maps effectively reflect the characteristics of geo-object changes on the ground surface, which makes the proposed method suitable for many applications requiring refined LC maps.


2020 ◽  
Vol 12 (3) ◽  
pp. 417 ◽  
Author(s):  
Xin Zhang ◽  
Liangxiu Han ◽  
Lianghao Han ◽  
Liang Zhu

Land cover information plays an important role in mapping ecological and environmental changes in Earth’s diverse landscapes for ecosystem monitoring. Remote sensing data have been widely used for the study of land cover, enabling efficient mapping of changes of the Earth surface from Space. Although the availability of high-resolution remote sensing imagery increases significantly every year, traditional land cover analysis approaches based on pixel and object levels are not optimal. Recent advancement in deep learning has achieved remarkable success on image recognition field and has shown potential in high spatial resolution remote sensing applications, including classification and object detection. In this paper, a comprehensive review on land cover classification and object detection approaches using high resolution imagery is provided. Through two case studies, we demonstrated the applications of the state-of-the-art deep learning models to high spatial resolution remote sensing data for land cover classification and object detection and evaluated their performances against traditional approaches. For a land cover classification task, the deep-learning-based methods provide an end-to-end solution by using both spatial and spectral information. They have shown better performance than the traditional pixel-based method, especially for the categories of different vegetation. For an objective detection task, the deep-learning-based object detection method achieved more than 98% accuracy in a large area; its high accuracy and efficiency could relieve the burden of the traditional, labour-intensive method. However, considering the diversity of remote sensing data, more training datasets are required in order to improve the generalisation and the robustness of deep learning-based models.


2020 ◽  
Vol 9 (8) ◽  
pp. 478 ◽  
Author(s):  
Zemin Han ◽  
Yuanyong Dian ◽  
Hao Xia ◽  
Jingjing Zhou ◽  
Yongfeng Jian ◽  
...  

Land cover is an important variable of the terrestrial ecosystem that provides information for natural resources management, urban sprawl detection, and environment research. To classify land cover with high-spatial-resolution multispectral remote sensing imagery is a difficult problem due to heterogeneous spectral values of the same object on the ground. Fully convolutional networks (FCNs) are a state-of-the-art method that has been increasingly used in image segmentation and classification. However, a systematic quantitative comparison of FCNs on high-spatial-multispectral remote imagery was not yet performed. In this paper, we adopted the three FCNs (FCN-8s, Segnet, and Unet) for Gaofen-2 (GF2) satellite imagery classification. Two scenes of GF2 with a total of 3329 polygon samples were used in the study area and a systematic quantitative comparison of FCNs was conducted with red, green, blue (RGB) and RGB+near infrared (NIR) inputs for GF2 satellite imagery. The results showed that: (1) The FCN methods perform well in land cover classification with GF2 imagery, and yet, different FCNs architectures exhibited different results in mapping accuracy. The FCN-8s model performed best among the Segnet and Unet architectures due to the multiscale feature channels in the upsampling stage. Averaged across the models, the overall accuracy (OA) and Kappa coefficient (Kappa) were 5% and 0.06 higher, respectively, in FCN-8s when compared with the other two models. (2) High-spatial-resolution remote sensing imagery with RGB+NIR bands performed better than RGB input at mapping land cover, and yet the advantage was limited; the OA and Kappa only increased an average of 0.4% and 0.01 in the RGB+NIR bands. (3) The GF2 imagery provided an encouraging result in estimating land cover based on the FCN-8s method, which can be exploited for large-scale land cover mapping in the future.


2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


Sign in / Sign up

Export Citation Format

Share Document