End-to-end spectral response characterization of the Clouds and the Earth's Radiant Energy System sensors from 0.3 to 200 microns

Author(s):  
P. Jarecke ◽  
M. Frink ◽  
M. Folkman ◽  
S. Carman ◽  
S. Baliga ◽  
...  
1998 ◽  
Author(s):  
Kory J. Priestley ◽  
Bruce R. Barkstrom ◽  
Herbert C. Bitting ◽  
Robert B. Lee III ◽  
Dhirendra K. Pandey ◽  
...  

2010 ◽  
Author(s):  
Susan Thomas ◽  
K. J. Priestley ◽  
N. M. Smith ◽  
N. G. Loeb ◽  
P. C. Hess ◽  
...  
Keyword(s):  

2008 ◽  
Vol 25 (7) ◽  
pp. 1087-1105 ◽  
Author(s):  
N. Clerbaux ◽  
S. Dewitte ◽  
C. Bertrand ◽  
D. Caprion ◽  
B. De Paepe ◽  
...  

Abstract The method used to estimate the unfiltered shortwave broadband radiance from the filtered radiances measured by the Geostationary Earth Radiation Budget (GERB) instrument is presented. This unfiltering method is used to generate the first released edition of the GERB-2 dataset. The method involves a set of regressions between the unfiltering factor (i.e., the ratio of the unfiltered and filtered broadband radiances) and the narrowband observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument. The regressions are theoretically derived from a large database of simulated spectral radiance curves obtained by radiative transfer computations. The generation of the database is fully described. Different sources of error that may affect the GERB unfiltering have been identified and the associated error magnitudes are assessed on this database. For most of the earth–atmosphere conditions, the error introduced during the unfiltering process is below 1%. In some conditions (e.g., low sun elevation above the horizon) the error can present a higher relative value, but the absolute error value remains well under the accuracy goal of 1% of the full instrument scale (2.4 W m−2 sr−1). To increase the confidence level, the edition 1 unfiltered radiances of GERB-2 are validated by cross comparison with collocated and coangular Clouds and the Earth’s Radiant Energy System (CERES) observations for different scene types. In addition to an overall offset between the two instruments, the intercomparisons indicate a scene-type dependency up to 4% in unfiltered radiance. Further studies are required to confirm the cause, but an insufficiently accurate characterization of the shortwave spectral response of the GERB instrument in the visible part of the spectrum is one area under further investigation.


2020 ◽  
Vol 12 (17) ◽  
pp. 2787
Author(s):  
Mohan Shankar ◽  
Wenying Su ◽  
Natividad Manalo-Smith ◽  
Norman G. Loeb

The Clouds and the Earth’s Radiant Energy System (CERES) instruments have enabled the generation of a multi-decadal Earth radiation budget (ERB) climate data record (CDR) at the top of the Earth’s atmosphere, within the atmosphere, and at the Earth’s surface. Six CERES instruments have been launched over the course of twenty years, starting in 1999. To seamlessly continue the data record into the future, there is a need to radiometrically scale observations from newly launched instruments to observations from the existing data record. In this work, we describe a methodology to place the CERES Flight Model (FM) 5 instrument on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on the same radiometric scale as the FM3 instrument on the Aqua spacecraft. We determine the required magnitude of radiometric scaling by using spatially and temporally matched observations from these two instruments and describe the process to radiometrically scale SNPP/FM5 to Aqua/FM3 through the instrument spectral response functions. We also present validation results after application of this radiometric scaling and demonstrate the long-term consistency of the SNPP/FM5 record in comparison with the CERES instruments on Aqua and Terra.


2000 ◽  
Author(s):  
Aiman Al-Hajjah ◽  
Kory J. Priestley ◽  
Susan Thomas ◽  
Robert B. Lee III ◽  
Bruce R. Barkstrom ◽  
...  

2020 ◽  
Vol 80 (2) ◽  
pp. 147-163
Author(s):  
X Liu ◽  
Y Kang ◽  
Q Liu ◽  
Z Guo ◽  
Y Chen ◽  
...  

The regional climate model RegCM version 4.6, developed by the European Centre for Medium-Range Weather Forecasts Reanalysis, was used to simulate the radiation budget over China. Clouds and the Earth’s Radiant Energy System (CERES) satellite data were utilized to evaluate the simulation results based on 4 radiative components: net shortwave (NSW) radiation at the surface of the earth and top of the atmosphere (TOA) under all-sky and clear-sky conditions. The performance of the model for low-value areas of NSW was superior to that for high-value areas. NSW at the surface and TOA under all-sky conditions was significantly underestimated; the spatial distribution of the bias was negative in the north and positive in the south, bounded by 25°N for the annual and seasonal averaged difference maps. Compared with the all-sky condition, the simulation effect under clear-sky conditions was significantly better, which indicates that the cloud fraction is the key factor affecting the accuracy of the simulation. In particular, the bias of the TOA NSW under the clear-sky condition was <±10 W m-2 in the eastern areas. The performance of the model was better over the eastern monsoon region in winter and autumn for surface NSW under clear-sky conditions, which may be related to different levels of air pollution during each season. Among the 3 areas, the regional average biases overall were largest (negative) over the Qinghai-Tibet alpine region and smallest over the eastern monsoon region.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 107
Author(s):  
Evelyn Reyes-Cueva ◽  
Juan Francisco Nicolalde ◽  
Javier Martínez-Gómez

Environmental problems have been associated with energy consumption and waste management. A solution is the development of renewable materials such as organic phase change materials. Characterization of new materials allows knowing their applications and simulations provide an idea of how they can developed. Consequently, this research is focused on the thermal and chemical characterization of five different avocado seed oils depending on the maturity stage of the seed: 100% unripe, 25% mature-75% unripe, 50% mature-50% unripe, 75% mature-25% unripe, and 100% mature. The characterization was performed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The best oil for natural environments corresponded to 100% matured seed with an enthalpy of fusion of 52.93 J·g−1, and a degradation temperature between 241–545 °C. In addition, the FTIR analysis shows that unripe seed oil seems to contain more lipids than a mature one. Furthermore, a simulation with an isothermal box was conducted with the characterized oil with an initial temperature of −14 °C for the isothermal box, −27 °C for the PCM box, and an ambient temperature of 25 °C. The results show that without the PCM the temperature can reach −8 °C and with it is −12 °C after 7 h, proving its application as a cold thermal energy system.


Sign in / Sign up

Export Citation Format

Share Document