scholarly journals Generation of a Seamless Earth Radiation Budget Climate Data Record: A New Methodology for Placing Overlapping Satellite Instruments on the Same Radiometric Scale

2020 ◽  
Vol 12 (17) ◽  
pp. 2787
Author(s):  
Mohan Shankar ◽  
Wenying Su ◽  
Natividad Manalo-Smith ◽  
Norman G. Loeb

The Clouds and the Earth’s Radiant Energy System (CERES) instruments have enabled the generation of a multi-decadal Earth radiation budget (ERB) climate data record (CDR) at the top of the Earth’s atmosphere, within the atmosphere, and at the Earth’s surface. Six CERES instruments have been launched over the course of twenty years, starting in 1999. To seamlessly continue the data record into the future, there is a need to radiometrically scale observations from newly launched instruments to observations from the existing data record. In this work, we describe a methodology to place the CERES Flight Model (FM) 5 instrument on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on the same radiometric scale as the FM3 instrument on the Aqua spacecraft. We determine the required magnitude of radiometric scaling by using spatially and temporally matched observations from these two instruments and describe the process to radiometrically scale SNPP/FM5 to Aqua/FM3 through the instrument spectral response functions. We also present validation results after application of this radiometric scaling and demonstrate the long-term consistency of the SNPP/FM5 record in comparison with the CERES instruments on Aqua and Terra.

2008 ◽  
Vol 25 (7) ◽  
pp. 1087-1105 ◽  
Author(s):  
N. Clerbaux ◽  
S. Dewitte ◽  
C. Bertrand ◽  
D. Caprion ◽  
B. De Paepe ◽  
...  

Abstract The method used to estimate the unfiltered shortwave broadband radiance from the filtered radiances measured by the Geostationary Earth Radiation Budget (GERB) instrument is presented. This unfiltering method is used to generate the first released edition of the GERB-2 dataset. The method involves a set of regressions between the unfiltering factor (i.e., the ratio of the unfiltered and filtered broadband radiances) and the narrowband observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument. The regressions are theoretically derived from a large database of simulated spectral radiance curves obtained by radiative transfer computations. The generation of the database is fully described. Different sources of error that may affect the GERB unfiltering have been identified and the associated error magnitudes are assessed on this database. For most of the earth–atmosphere conditions, the error introduced during the unfiltering process is below 1%. In some conditions (e.g., low sun elevation above the horizon) the error can present a higher relative value, but the absolute error value remains well under the accuracy goal of 1% of the full instrument scale (2.4 W m−2 sr−1). To increase the confidence level, the edition 1 unfiltered radiances of GERB-2 are validated by cross comparison with collocated and coangular Clouds and the Earth’s Radiant Energy System (CERES) observations for different scene types. In addition to an overall offset between the two instruments, the intercomparisons indicate a scene-type dependency up to 4% in unfiltered radiance. Further studies are required to confirm the cause, but an insufficiently accurate characterization of the shortwave spectral response of the GERB instrument in the visible part of the spectrum is one area under further investigation.


2016 ◽  
Vol 8 (3) ◽  
pp. 182 ◽  
Author(s):  
Norman Loeb ◽  
Natividad Manalo-Smith ◽  
Wenying Su ◽  
Mohan Shankar ◽  
Susan Thomas

2020 ◽  
Author(s):  
Kory Priestley ◽  
Mohan Shankar ◽  
Susan Thomas

<p>NASA’s Earth Radiation Budget Science Team, ERB-ST, (Previously known as the CERES Science Team) is a multi-disciplinary team led out of NASA’s Langley Research Center which has the responsibility for governance of the nation’s multi-decadal Earth Radiation Budget Climate Data Record, ERB CDR.  The Science Data Processing System which produces the ERB-CDR is highly complex, producing Level one through Level 4 products.  The system ingests data from 15 different instruments on 9 different spacecraft (5 GEO and 4 LEO) as well as other ancillary information, producing 25 different products with consistent TOA, Surface, and atmospheric radiative fluxes, cloud and aerosol properties on multiple spatial and temporal scales.  Spatial scales vary from instantaneous/pixel (25 km), 1-deg grid, zonal, regional and global means while temporal scales vary across instantaneous, hourly, 3 hourly to monthly scales.  Accuracy and precision values vary across the various spatial and temporal scales, with the long-term goal of measuring decadal trends of better than 0.3 W/m^2 per decade.</p><p> </p><p>Instrument calibration and precision, as measured through the post-launch protocols, is one of many considerations that drive the decision to reprocess, others include, but are not limited to validation and instantiation of new algorithms across all levels of products, outside teams reprocessing the products we ingest, the launch of new instrumentation to replace operational weather imagers on Geo satellites, updates to processing hardware, and of course resource availability.  These all need to be managed/considered in order to provide the global community products of sufficient accuracy and precision on a time-scale which allows continued advancement and discovery of key scientific questions such that policy makers may make informed decisions.</p><p> </p><p>This presentation will highlight the processes and protocols the Earth Radiation Budget Science Team utilizes to guide reprocessing decisions, identifying lessons learned and best practices.</p>


2021 ◽  
Author(s):  
Peter Pilewskie ◽  
Maria Hakuba ◽  

<p>The NASA Libera Mission, named for the daughter of Ceres in Roman mythology, will provide continuity of the Clouds and the Earth’s Radiant Energy System (CERES) Earth radiation budget (ERB) observations from space. Libera’s  attributes enable a seamless extension of the ERB climate data record. Libera will acquire integrated radiance over the CERES FM6-heritage broad spectral bands in the shortwave (0.3 to 5 μm), longwave (5 to 50 μm) and total (0.3 to beyond 100 μm) and adds a split-shortwave band (0.7 to 5 μm) to provide deeper insight into shortwave energy deposition. Libera leverages advanced detector technologies using vertically aligned black-carbon nanotubes with closed-loop electrical substitution radiometry to achieve radiometric uncertainty of approximately 0.2%. Libera will also employ a wide field-of-view camera to provide scene context and explore pathways for separating future ERB missions from complex imagers.</p><p>The Libera science objectives associated with continuity and extension of the ERB data record are to identify and quantify processes responsible for ERB variability on various time scales. Beyond data continuity, Libera’s new and enhanced observational capabilities will advance our understanding of spatiotemporal variations of radiative energy flow in the visible and and near-infrared spectral regions. They will also enable the rapid development of angular distribution models to facilitate near-IR and visible radiance-to-irradiance conversion.</p>


2011 ◽  
Vol 28 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Kory J. Priestley ◽  
G. Louis Smith ◽  
Susan Thomas ◽  
Denise Cooper ◽  
Robert B. Lee ◽  
...  

Abstract The Clouds and the Earth’s Radiant Energy System (CERES) flight models 1 through 4 instruments were launched aboard NASA’s Earth Observing System (EOS) Terra and Aqua spacecraft into 705-km sun-synchronous orbits with 10:30 p.m. and 1:30 a.m. local time equatorial crossing times. With these instruments CERES provides state-of-the-art observations and products related to the earth’s radiation budget at the top of the atmosphere (TOA). The archived CERES science data products consist of geolocated and calibrated instantaneous filtered and unfiltered radiances through temporally and spatially averaged TOA, surface, and atmospheric fluxes. CERES-filtered radiance measurements cover three spectral bands: shortwave (0.3–5 μm), total (0.3>100 μm), and an atmospheric window channel (8–12 μm). CERES climate data products realize a factor of 2–4 improvement in calibration accuracy and stability over the previotus Earth Radiation Budget Experiment (ERBE) products. To achieve this improvement there are three editions of data products. Edition 1 generates data products using gain coefficients derived from ground calibrations. After a minimum of four months, the calibration data are examined to remove drifts in the calibration. The data are then reprocessed to produce the edition 2 data products. These products are available for science investigations for which an accuracy of 2% is sufficient. Also, a validation protocol is applied to these products to find problems and develop solutions, after which edition 3 data products will be computed, for which the objectives are calibration stability of better than 0.2% and calibration traceability from ground to flight of 0.25%. This paper reports the status of the radiometric accuracy and stability of the CERES edition 2 instrument data products through April 2007.


2018 ◽  
Vol 10 (10) ◽  
pp. 1539 ◽  
Author(s):  
Steven Dewitte ◽  
Nicolas Clerbaux

The Earth Radiation Budget (ERB) at the top of the atmosphere quantifies how the earth gains energy from the sun and loses energy to space. Its monitoring is of fundamental importance for understanding ongoing climate change. In this paper, decadal changes of the Outgoing Longwave Radiation (OLR) as measured by the Clouds and Earth’s Radiant Energy System from 2000 to 2018, the Earth Radiation Budget Experiment from 1985 to 1998, and the High-resolution Infrared Radiation Sounder from 1985 to 2018 are analysed. The OLR has been rising since 1985, and correlates well with the rising global temperature. An observational estimate of the derivative of the OLR with respect to temperature of 2.93 +/− 0.3 W/m 2 K is obtained. The regional patterns of the observed OLR change from 1985–2000 to 2001–2017 show a warming pattern in the Northern Hemisphere in particular in the Arctic, as well as tropical cloudiness changes related to a strengthening of La Niña.


2020 ◽  
Vol 12 (20) ◽  
pp. 3379
Author(s):  
Steven Dewitte

The Earth Radiation Budget (ERB) at the top of the atmosphere describes how the Earth gains energy from the Sun and loses energy to space through the reflection of solar radiation and the emission of thermal radiation. The ERB is measured from space with dedicated remote sensing instruments. Its long-term monitoring is of fundamental importance for understanding climate change. This Special Issue contains contributions focusing on ERB remote sensing instruments for either (1) the establishment of past and current ERB Climate Data Records (CDRs), (2) insights in climate change gained from the analysis of ERB CDRs, and 3) the outlook for continued or improved future ERB monitoring.


Sign in / Sign up

Export Citation Format

Share Document