Ice roughness classification and ERS SAR imagery of Arctic sea ice: evaluation of feature-extraction algorithms by genetic programming

Author(s):  
J.M. Daida ◽  
R.G. Onstott ◽  
T.F. Bersano-Begey ◽  
S.J. Ross ◽  
J.F. Vesecky
Author(s):  
Anne W. Nolin

Sea ice surface roughness affects ice-atmosphere interactions, serves as an indicator of ice age, shows patterns of ice convergence and divergence, affects the spatial extent of summer melt ponds, and ice albedo. We have developed a method for mapping sea ice surface roughness using angular reflectance data from the Multi-angle Imaging SpectroRadiometer (MISR) and lidar-derived roughness measurements from the Airborne Topographic Mapper (ATM). Using an empirical data modeling approach, we derived estimates of Arctic sea ice roughness ranging from centimeters to decimeters meters within the MISR 275-m pixel size. Using independent ATM data for validation, we find that histograms of lidar and multi-angular roughness values are nearly identical for areas with roughness <20 cm but that for rougher regions, the MISR-derived roughness has a narrower range of values than the ATM data. The algorithm is able to accurately identify areas that transition between smooth and rough ice. Because of its coarser spatial scale, MISR-derived roughness data have a variance of about half that ATM roughness data.


Author(s):  
X. Shen ◽  
X. Liu ◽  
Y. Yao ◽  
T. Feng

Abstract. The observation of Arctic sea ice is of great significance to monitoring of the polar environment, research on global climate change and application of Arctic navigation. Compared to optical imagery and SAR imagery, passive microwave images can be obtained for all-sky conditions with high time resolution. However, the spatial resolution of passive microwave images is relatively low (6.25 km – 25 km) for the observation of detailed sea ice characteristics and small-scale sea ice geographical phenomena. Therefore, in this paper, considering the suitability of different alignment and fusion strategies to the characteristics of passive microwave images of sea ice, two multi-images deep learning super-resolution (SR) algorithms, Recurrent Back-Projection Network (RBPN) and network of Temporal Group Attention (TGA), are selected to test the effects of SR technique for passive microwave images of sea ice. Both qualitative and quantitative comparisons are provided for the SR results oriented from two algorithms. Overall, the SR performance of TGA algorithm outperforms RBPN algorithm for the passive microwave images of sea ice.


2018 ◽  
Vol 11 (1) ◽  
pp. 50 ◽  
Author(s):  
Anne Nolin ◽  
Eugene Mar

Sea ice surface roughness affects ice-atmosphere interactions, serves as an indicator of ice age, shows patterns of ice convergence and divergence, affects the spatial extent of summer meltponds, and affects ice albedo. We have developed a method for mapping sea ice surface roughness using angular reflectance data from the Multi-angle Imaging SpectroRadiometer (MISR) and lidar-derived roughness measurements from the Airborne Topographic Mapper (ATM). Using an empirical data modeling approach, we derived estimates of Arctic sea ice roughness ranging from centimeters to decimeters within the MISR 275-m pixel size. Using independent ATM data for validation, we find that histograms of lidar and multi-angular roughness values were nearly identical for areas with a roughness < 20 cm, but for rougher regions, the MISR-estimated roughness had a narrower range of values than the ATM data. The algorithm was able to accurately identify areas that transition between smooth and rough ice. Because of its coarser spatial scale, MISR-estimated roughness data have a variance about half that of ATM roughness data.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


1988 ◽  
Author(s):  
NAVAL POLAR OCEANOGRAPHY CENTER WASHINGTON DC

1992 ◽  
Author(s):  
NAVAL POLAR OCEANOGRAPHY CENTER WASHINGTON DC

Sign in / Sign up

Export Citation Format

Share Document