Interactions Between Arctic Sea Ice and Atmospheric Boundary Layer in the Presence of Leads

1993 ◽  
Author(s):  
Judith A. Curry
Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 591
Author(s):  
Dmitry Chechin

A relationship between the friction velocity u☆ and mean wind speed U in a stable atmospheric boundary layer (ABL) over Arctic sea ice was considered. To that aim, the observations collected during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment were used. The observations showed the so-called “hockey-stick” shape of the u☆−U relationship, which consists of a slow increase of u☆ with increasing wind speed for U<Utr and a more rapid almost linear increase of u☆ for U>Utr, where Utr is the wind speed of transition between the two regimes. Such a relationship is most pronounced at the highest observational levels, namely at 9 and 14 m, and is also sharper when the air-surface temperature difference exceeds its average values for stable conditions. It is shown that the Monin–Obukhov similarity theory (MOST) reproduces the observed u☆−U relationship rather well. This suggests that at least for the SHEBA dataset, there is no contradiction between MOST and the “hockey-stick” shape of the u☆−U relationship. However, the SHEBA data, as well as the single-column simulations show that for cases with strong stability, u☆ significantly decreases with height due to the shallowness of the ABL. It was shown that when u☆ was assumed independent of height, the value of the normalized drag coefficient, i.e., of the so-called stability correction function for momentum, calculated using observations at a certain level, can be significantly underestimated. To overcome this, the decrease of u☆ with height was taken into account in the framework of MOST using local scaling instead of the scaling with surface fluxes. Using such an extended MOST brought the estimates of the normalized drag coefficient closer to the Businger–Dyer relation.


1994 ◽  
Vol 68 (1-2) ◽  
pp. 75-108 ◽  
Author(s):  
Burghard Brümmer ◽  
Birgit Busack ◽  
Heinrich Hoeber ◽  
Gottfried Kruspe

2021 ◽  
Author(s):  
Zheng Liu ◽  
Axel Schweiger

Abstract The effect of leads in Arctic sea ice on clouds is a potentially important climate feedback. We use observations of clouds and leads from the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) to study the effects of leads on clouds. Newly open leads increase cloudiness while newly frozen leads decrease cloudiness. The latter dominates but the magnitude of the net effect depends on the life cycle of leads. The cloud dissipating effect decrease the Arctic cloudiness by 4-6% in cold months. The cloud increasing effect of open leads is evident in areas with strong sea ice deformation and frequent lead formation. Lead effects can reach beyond the boundary layer to 6 km. The lack of proper representation of lead effect on clouds in current climate models and reanalyses contributes to the overestimation of cloudiness over Arctic sea ice in cold months.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


1988 ◽  
Author(s):  
NAVAL POLAR OCEANOGRAPHY CENTER WASHINGTON DC

Sign in / Sign up

Export Citation Format

Share Document