Estimating vegetation fractional coverage for temperate grassland in northern China based on remotely sensed data and rainfall time series

Author(s):  
Xiaobing Li ◽  
Hong Wang ◽  
Na Fu ◽  
DanDan Wang ◽  
Li Zhang
2018 ◽  
Vol 19 (8) ◽  
pp. 1305-1320 ◽  
Author(s):  
Ashley J. Wright ◽  
Jeffrey P. Walker ◽  
Valentijn R. N. Pauwels

Abstract An increased understanding of the uncertainties present in rainfall time series can lead to improved confidence in both short- and long-term streamflow forecasts. This study presents an analysis that considers errors arising from model input data, model structure, model parameters, and model states with the objective of finding a self-consistent set that includes hydrological models, model parameters, streamflow, remotely sensed (RS) soil moisture (SM), and rainfall. This methodology can be used by hydrologists to aid model and satellite selection. Taking advantage of model input data reduction and model inversion techniques, this study uses a previously developed methodology to estimate areal rainfall time series for the study catchment of Warwick, Australia, for multiple rainfall–runoff models. RS SM observations from the Soil Moisture Ocean Salinity (SMOS) and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) satellites were assimilated into three different rainfall–runoff models using an ensemble Kalman filter (EnKF). Innovations resulting from the observed and predicted SM were analyzed for Gaussianity. The findings demonstrate that consistency between hydrological models, model parameters, streamflow, RS SM, and rainfall can be found. Joint estimation of rainfall time series and model parameters consistently improved streamflow simulations. For all models rainfall estimates are less than the observed rainfall, and rainfall estimates obtained using the Sacramento Soil Moisture Accounting (SAC-SMA) model are the most consistent with gauge-based observations. The SAC-SMA model simulates streamflow that is most consistent with observations. EnKF innovations obtained when SMOS RS SM observations were assimilated into the SAC-SMA model demonstrate consistency between SM products.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hai Lan ◽  
Xinshi Zheng ◽  
Paul M. Torrens

Inquiry using data from remote Earth-observing platforms often confronts a straightforward but particularly thorny problem: huge amounts of data, in ever-replenishing supplies, are available to support inquiry, but scientists’ agility in converting data into actionable information often struggles to keep pace with rapidly incoming streams of data that amass in expanding archival silos. Abstraction of those data is a convenient response, and many studies informed purely by remotely sensed data are by necessity limited to a small study area with a relatively few scenes of imagery, or they rely on larger mosaics of images at low resolution. As a result, it is often challenging to thread explanations across scales from the local to the global, even though doing so is often critical to the science under pursuit. Here, a solution is proposed, by exploiting Apache Spark, to implement parallel, in-memory image processing with ability to rapidly classify large volumes of multiscale remotely sensed images and to perform necessary analysis to detect changes on the time series. It shows that processing on three different scales of Landsat 8 data (up to ~107.4 GB, five-scene, time series image sets) can be accomplished in 1018 seconds on local cloud environment. Applying the same framework with slight parameter adjustments, it processed same coverage MODIS data in 54 seconds on commercial cloud platform. Theoretically, the proposed scheme can handle all forms of remote sensing imagery commonly used in the Earth and environmental sciences, requiring only minor adjustments in parameterization of the computing jobs to adjust to the data. The authors suggest that the “Spark sensing” approach could provide the flexibility, extensibility, and accessibility necessary to keep inquiry in the Earth and environmental sciences at pace with developments in data provision.


2009 ◽  
Vol 1 (3) ◽  
pp. 519-533 ◽  
Author(s):  
Paul Evangelista ◽  
Thomas Stohlgren ◽  
Jeffrey Morisette ◽  
Sunil Kumar

2015 ◽  
Vol 14 (4) ◽  
pp. 439-449 ◽  
Author(s):  
Jinling Zhao ◽  
Chao Xu ◽  
Linsheng Huang ◽  
Dongyan Zhang ◽  
Dong Liang

Sign in / Sign up

Export Citation Format

Share Document