scholarly journals Optimal Spectral Decomposition (OSD) for Remotely Sensed Ocean Data Assimilation

Author(s):  
Peter C. Chu
2015 ◽  
Vol 32 (4) ◽  
pp. 828-841 ◽  
Author(s):  
Peter C. Chu ◽  
Robin T. Tokmakian ◽  
Chenwu Fan ◽  
L. Charles Sun

AbstractOptimal spectral decomposition (OSD) is applied to ocean data assimilation with variable (temperature, salinity, or velocity) anomalies (relative to background or modeled values) decomposed into generalized Fourier series, such that any anomaly is represented by a linear combination of products of basis functions and corresponding spectral coefficients. It has three steps: 1) determination of the basis functions, 2) optimal mode truncation, and 3) update of the spectral coefficients from innovation (observational increment). The basis functions, depending only on the topography of the ocean basin, are the eigenvectors of the Laplacian operator with the same lateral boundary conditions as the assimilated variable anomalies. The Vapnik–Chervonkis dimension is used to determine the optimal mode truncation. After that, the model field updates due to innovation through solving a set of a linear algebraic equations of the spectral coefficients. The strength and weakness of the OSD method are demonstrated through a twin experiment using the Parallel Ocean Program (POP) model.


2002 ◽  
Author(s):  
Patricia A. Phoebus ◽  
James A. Cummings

2002 ◽  
Vol 32 (9) ◽  
pp. 2509-2519 ◽  
Author(s):  
Gerrit Burgers ◽  
Magdalena A. Balmaseda ◽  
Femke C. Vossepoel ◽  
Geert Jan van Oldenborgh ◽  
Peter Jan van Leeuwen

Abstract The question is addressed whether using unbalanced updates in ocean-data assimilation schemes for seasonal forecasting systems can result in a relatively poor simulation of zonal currents. An assimilation scheme, where temperature observations are used for updating only the density field, is compared to a scheme where updates of density field and zonal velocities are related by geostrophic balance. This is done for an equatorial linear shallow-water model. It is found that equatorial zonal velocities can be detoriated if velocity is not updated in the assimilation procedure. Adding balanced updates to the zonal velocity is shown to be a simple remedy for the shallow-water model. Next, optimal interpolation (OI) schemes with balanced updates of the zonal velocity are implemented in two ocean general circulation models. First tests indicate a beneficial impact on equatorial upper-ocean zonal currents.


Oceanography ◽  
2009 ◽  
Vol 22 (3) ◽  
pp. 14-21 ◽  
Author(s):  
Michael Bell ◽  
Michel Lefèbvre ◽  
Pierre-Yves Le Traon ◽  
Neville Smith ◽  
Kirsten Wilmer-Becker

2010 ◽  
Vol 50 (2) ◽  
pp. 201-223 ◽  
Author(s):  
Tong Lee ◽  
Toshiyuki Awaji ◽  
Magdalena Balmaseda ◽  
Nicolas Ferry ◽  
Yosuke Fujii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document