volume transport
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 75)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yoonho Jung ◽  
Jae-Hun Park ◽  
Naoki Hirose ◽  
Sang-Wook Yeh ◽  
Kuk Jin Kim ◽  
...  

AbstractThe significance of long-term teleconnections derived from the anomalous climatic conditions of El Niño has been a highly debated topic, where the remote response of coastal hydrodynamics and marine ecosystems to El Niño conditions is not completely understood. The 14-year long data from a ship-borne acoustic Doppler current profiler was used to examine the El Niño’s impact, in particular, 2009 and 2015 El Niño events, on oceanic and biological processes in coastal regions across the Korea/Tsushima Strait. Here, it was revealed that the summer volume transport could be decreased by 8.7% (from 2.46 ± 0.39 to 2.24 ± 0.26 Sv) due to the anomalous northerly winds in the developing year of El Niño. Furthermore, the fall mean volume backscattering strength could be decreased by 1.8% (from − 97.09 ± 2.14 to − 98.84 ± 2.10 dB) due to the decreased surface solar radiation after the El Niño events. Overall, 2009 and 2015 El Niño events remotely affected volume transport and zooplankton abundance across the Korea/Tsushima Strait through climatic teleconnections.


2021 ◽  
Vol 5 (2) ◽  
pp. 265-278
Author(s):  
Venny Arianti ◽  
Yosi Pahala ◽  
Aswanti Setyawati ◽  
Prasadja Ricardianto

The purpose of the study was to determine and analyze the effect of train rates, comfort and timeliness on passenger satisfaction and the impact of repurchase decision of train transportation services for the Jenggala Train on the Sidoarjo-Mojokerto route, at East Java, Indonesia. The main problem, there are complaints about unsatisfactory service, inaccuracy of departure and arrival time at the station aim. Also, the passenger capacity provided is large, but the volume transport is still minimal and there is no data on passengers who make repeat purchases. The sample are 100 Jenggala train crossing service Sidoarjo-Mojokerto passengers. Method of data analyze used path analysis. The result showed that the changes of rate amount, experience of passenger comfort, and timeliness of train travel had major impact on the decision of repurchase. As a theorithical and practical implication, the improvement of service user facilities at the station and on the train is very important needed to create comfort for users of transportation services train, because the comfort variable has a significant effect dominant in influencing purchasing decisions.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2675
Author(s):  
Wenqi Shi ◽  
Ning Li ◽  
Xianqing Lv

Changes in the climate system over recent decades have had profound impacts on the mean state and variability of ocean circulation, while the Nordic Sea overflow has remained stable in volume transport during the last two decades. The changes of the overflow flux depend on the pressure difference at the depth of the overflow outlet on both sides of the Greenland-Scotland Ridge (GSR). Combining satellite altimeter data and the reanalysis hydrological data, the analysis found that the barotropic pressure difference and baroclinic pressure difference on both sides of the GSR had a good negative correlation from 1993 to 2015. Both are caused by changes in the properties of the upper water, and the total pressure difference has no trend change. The weakening of deep convection can only change the temperature and salt structure of the Nordic Sea, but cannot reduce the mass of the water column. Therefore, the stable pressure difference drives a stable overflow. The overflow water storage in the Nordic Sea is decreasing, which may be caused by the reduction of local overflow water production and the constant overflow flux. When the upper interface of the overflow water body in the Nordic Sea is close to or below the outlet depth, the overflow is likely to greatly slow down or even experience a hiatus in the future, which deserves more attention.


2021 ◽  
pp. 1-69 ◽  
Author(s):  
Dafydd Stephenson ◽  
F. Sévellec

AbstractUnpredictable variations in the ocean originate from both external atmospheric forcing and chaotic processes internal to the ocean itself, and are a crucial sink of predictability on interdecadal timescales. In a global ocean model, we present i.) an optimization framework to compute the most efficient noise patterns to generate uncertainty and ii.) a computationally inexpensive, dynamical method for attributing sources of ocean uncertainty to internal (mesoscale eddy-driven) and external (atmospherically driven) origins, sidestepping the more typical ensemble approach. These two methods are then applied to a range of metrics (heat content, volume transport, and heat transport) and time averages (monthly, yearly, and decadal) in the subtropical and subpolar North Atlantic. The optimal noise patterns create variability in integrated quantities of interest through features of the underlying circulation such as the North Atlantic Current and deep water formation regions. Meanwhile, noise forcing diagnosed from model representations of the actual climate system stimulates these theoretical patterns with various degrees of efficiency, ultimately leading to the growth of error. We reaffirm that higher frequency variations in meridional transports are primarily wind driven, while surface buoyancy forcing is the ultimately dominant source of uncertainty at lower frequencies. For year-averaged quantities in the subtropics, it is mesoscale eddies which contribute the most to oceanic uncertainty, accounting for up to 60% after 60 years of growth for volume transport at 25°N. The impact of eddies is greatly reduced in the subpolar region, which we suggest may be explained by overall lower sensitivity to small-scale noise there.


2021 ◽  
Vol 8 ◽  
Author(s):  
A. V. Pnyushkov ◽  
I. V. Polyakov ◽  
G. V. Alekseev ◽  
I. M. Ashik ◽  
T. M. Baumann ◽  
...  

Mooring observations in the eastern Eurasian Basin of the Arctic Ocean showed that mean 2013–2018 along-slope volume and heat (calculated relative to the freezing temperature) transports in the upper 800 m were 4.8 ± 0.1 Sv (1 Sv = 106 m3/s) and 34.8 ± 0.6 TW, respectively. Volume and heat transports within the Atlantic Water (AW) layer (∼150–800 m) in 2013–2018 lacked significant temporal shifts at annual and longer time scales: averaged over the two periods of mooring deployment in 2013–2015 and 2015–2018, volume transports were 3.1 ± 0.1 Sv, while AW heat transports were 31.3 ± 1.0 TW and 34.8 ± 0.8 TW. Moreover, the reconstructed AW volume transports over longer, 2003–2018, period of time showed strong interannual variations but lacked a statistically significant trend. However, we found a weak positive trend of 0.08 ± 0.07 Sv/year in the barotropic AW volume transport estimated using dynamic ocean topography (DOT) measurements in 2003–2014 – the longest period spanned by the DOT dataset. Vertical coherence of 2013–2018 transports in the halocline (70–140 m) and AW (∼150–800 m) layers was high, suggesting the essential role of the barotropic forcing in constraining along-slope transports. Quantitative estimates of transports and their variability discussed in this study help identify the role of atlantification in critical changes of the eastern Arctic Ocean.


2021 ◽  
pp. 1-50
Author(s):  
Helene Asbjørnsen ◽  
Helen L. Johnson ◽  
Marius Årthun

AbstractThe inflow across the Iceland-Scotland Ridge determines the amount of heat supplied to the Nordic Seas from the subpolar North Atlantic (SPNA). Consequently, variable inflow properties and volume transport at the ridge influence marine ecosystems and sea ice extent further north. Here, we identify the upstream pathways of the Nordic Seas inflow, and assess the mechanisms responsible for interannual inflow variability. Using an eddy-permitting ocean model hindcast and a Lagrangian analysis tool, numerical particles are released at the ridge during 1986-2015 and tracked backward in time. We find an inflow that is well-mixed in terms of its properties, where 64% comes from the subtropics and 26% has a subpolar or Arctic origin. The local instantaneous response to the NAO is important for the overall transport of both subtropical and Arctic-origin waters at the ridge. In the years before reaching the ridge, the subtropical particles are influenced by atmospheric circulation anomalies in the gyre boundary region and over the SPNA, forcing shifts in the North Atlantic Current (NAC) and the subpolar front. An equatorward shifted NAC and westward shifted subpolar front correspond to a warmer, more saline inflow. Atmospheric circulation anomalies over the SPNA also affect the amount of Arctic-origin water re-routed from the Labrador Current toward the Nordic Seas. A high transport of Arctic-origin water is associated with a colder, fresher inflow across the Iceland-Scotland Ridge. The results thus demonstrate the importance of gyre dynamics and wind forcing in affecting the Nordic Seas inflow properties and volume transport.


2021 ◽  
Author(s):  
Xin Yuan ◽  
Qingye Wang ◽  
Jie Ma ◽  
Shijian Hu ◽  
Dunxin Hu

Abstract Based on direct measurements of the Kuroshio current velocity at 18°N by an array of three moorings from January 2018 to February 2020, the intraseasonal variability (ISV) of the Kuroshio and possible dynamic mechanism are studied. The Kuroshio transport in the upper 350m between 122.7°E and 123.3°E is estimated to be 6.5 Sv ± 2.6 Sv. It is revealed for the first time that both the current velocity and volume transport the Kuroshio at 18°N have a significant 50-60-day ISV, which contributes to over 30% of the total variance. Further analysis indicates the ISV of the Kuroshio is caused by the westward propagating eddies with a wavelength of about 633 km and a propagation speed of about 13 cm/s. In addition, the transport mode (74.2%) of the Kuroshio at 18°N is dominant, rather than the migration mode (11.6%). That is different from the Kuroshio east of Taiwan. The findings of this study will highlight the important role of westward Rossby waves (eddies) with a finite wavelength in modulating the intraseasonal variability of the Kuroshio transport near its origin.


Sign in / Sign up

Export Citation Format

Share Document