Marine oil slick and platform detection by compact polrimetric synthetic aperture radar

Author(s):  
Biao Zhang ◽  
Xiaofeng Li ◽  
William Perrie ◽  
Oscar Garcia-Pineda
2021 ◽  
Vol 13 (9) ◽  
pp. 1607
Author(s):  
Guannan Li ◽  
Ying Li ◽  
Yongchao Hou ◽  
Xiang Wang ◽  
Lin Wang

Marine oil spill detection is vital for strengthening the emergency commands of oil spill accidents and repairing the marine environment after a disaster. Polarimetric Synthetic Aperture Radar (Pol-SAR) can obtain abundant information of the targets by measuring their complex scattering matrices, which is conducive to analyze and interpret the scattering mechanism of oil slicks, look-alikes, and seawater and realize the extraction and detection of oil slicks. The polarimetric features of quad-pol SAR have now been extended to oil spill detection. Inspired by this advancement, we proposed a set of improved polarimetric feature combination based on polarimetric scattering entropy H and the improved anisotropy A12–H_A12. The objective of this study was to improve the distinguishability between oil slicks, look-alikes, and background seawater. First, the oil spill detection capability of the H_A12 combination was observed to be superior than that obtained using the traditional H_A combination; therefore, it can be adopted as an alternate oil spill detection strategy to the latter. Second, H(1 − A12) combination can enhance the scattering randomness of the oil spill target, which outperformed the remaining types of polarimetric feature parameters in different oil spill scenarios, including in respect to the relative thickness information of oil slicks, oil slicks and look-alikes, and different types of oil slicks. The evaluations and comparisons showed that the proposed polarimetric features can indicate the oil slick information and effectively suppress the sea clutter and look-alike information.


2019 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Patrícia Genovez ◽  
Cathleen Jones ◽  
Sidnei Sant’Anna ◽  
Corina Freitas

During emergency responses to oil spills on the sea surface, quick detection and characterization of an oil slick is essential. The use of Synthetic Aperture Radar (SAR) in general and polarimetric SAR (PolSAR) in particular to detect and discriminate mineral oils from look-alikes is known. However, research exploring its potential to detect oil slick characteristics, e.g., thickness variations, is relatively new. Here a Multi-Source Image Processing System capable of processing optical, SAR and PolSAR data with proper statistical models was tested for the first time for oil slick characterization. An oil seep detected by NASA`s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) in the Gulf of Mexico was used as a study case. This classifier uses a supervised approach to compare stochastic distances between different statistical distributions (fx) and hypothesis tests to associate confidence levels to the classification results. The classifier was able to detect zoning regions within the slick with high global accuracies and low uncertainties. Two different classes, likely associated with the thicker and thinner oil layers, were recognized. The best results, statistically equivalent, were obtained using different data formats: polarimetric, intensity pair and intensity single-channel. The presence of oceanic features in the form of oceanic fronts and internal waves created convergence zones that defined the shape, spreading and concentration of the thickest layers of oil. The statistical classifier was able to detect the thicker oil layers accumulated along these features. Identification of the relative thickness of spilled oils can increase the oil recovery efficiency, allowing better positioning of barriers and skimmers over the thickest layers. Decision makers can use this information to guide aerial surveillance, in situ oil samples collection and clean-up operations in order to minimize environmental impacts.


2021 ◽  
Vol 162 ◽  
pp. 111921
Author(s):  
Saima Naz ◽  
Muhammad Farooq Iqbal ◽  
Irfan Mahmood ◽  
Mona Allam

Sign in / Sign up

Export Citation Format

Share Document