scholarly journals Marine Oil Slick Detection Using Improved Polarimetric Feature Parameters Based on Polarimetric Synthetic Aperture Radar Data

2021 ◽  
Vol 13 (9) ◽  
pp. 1607
Author(s):  
Guannan Li ◽  
Ying Li ◽  
Yongchao Hou ◽  
Xiang Wang ◽  
Lin Wang

Marine oil spill detection is vital for strengthening the emergency commands of oil spill accidents and repairing the marine environment after a disaster. Polarimetric Synthetic Aperture Radar (Pol-SAR) can obtain abundant information of the targets by measuring their complex scattering matrices, which is conducive to analyze and interpret the scattering mechanism of oil slicks, look-alikes, and seawater and realize the extraction and detection of oil slicks. The polarimetric features of quad-pol SAR have now been extended to oil spill detection. Inspired by this advancement, we proposed a set of improved polarimetric feature combination based on polarimetric scattering entropy H and the improved anisotropy A12–H_A12. The objective of this study was to improve the distinguishability between oil slicks, look-alikes, and background seawater. First, the oil spill detection capability of the H_A12 combination was observed to be superior than that obtained using the traditional H_A combination; therefore, it can be adopted as an alternate oil spill detection strategy to the latter. Second, H(1 − A12) combination can enhance the scattering randomness of the oil spill target, which outperformed the remaining types of polarimetric feature parameters in different oil spill scenarios, including in respect to the relative thickness information of oil slicks, oil slicks and look-alikes, and different types of oil slicks. The evaluations and comparisons showed that the proposed polarimetric features can indicate the oil slick information and effectively suppress the sea clutter and look-alike information.

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5176
Author(s):  
Guannan Li ◽  
Ying Li ◽  
Bingxin Liu ◽  
Peng Wu ◽  
Chen Chen

Polarimetric synthetic aperture radar is an important tool in the effective detection of marine oil spills. In this study, two cases of Radarsat-2 Fine mode quad-polarimetric synthetic aperture radar datasets are exploited to detect a well-known oil seep area that collected over the Gulf of Mexico using the same research area, sensor, and time. A novel oil spill detection scheme based on a multi-polarimetric features model matching method using spectral pan-similarity measure (SPM) is proposed. A multi-polarimetric features curve is generated based on optimal polarimetric features selected using Jeffreys–Matusita distance considering its ability to discriminate between thick and thin oil slicks and seawater. The SPM is used to search for and match homogeneous unlabeled pixels and assign them to a class with the highest similarity to their spectral vector size, spectral curve shape, and spectral information content. The superiority of the SPM for oil spill detection compared to traditional spectral similarity measures is demonstrated for the first time based on accuracy assessments and computational complexity analysis by comparing with four traditional spectral similarity measures, random forest (RF), support vector machine (SVM), and decision tree (DT). Experiment results indicate that the proposed method has better oil spill detection capability, with a higher average accuracy and kappa coefficient (1.5–7.9% and 1–25% higher, respectively) than the four traditional spectral similarity measures under the same computational complexity operations. Furthermore, in most cases, the proposed method produces valuable and acceptable results that are better than the RF, SVM, and DT in terms of accuracy and computational complexity.


2021 ◽  
Vol 162 ◽  
pp. 111921
Author(s):  
Saima Naz ◽  
Muhammad Farooq Iqbal ◽  
Irfan Mahmood ◽  
Mona Allam

2013 ◽  
Vol 29 (6) ◽  
pp. 645-655 ◽  
Author(s):  
Tae-Sung Kim ◽  
Kyung-Ae Park ◽  
Min-Sun Lee ◽  
Jae-Jin Park ◽  
Sungwook Hong ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 4408 ◽  
Author(s):  
Yu Li ◽  
Yuanzhi Zhang ◽  
Zifeng Yuan ◽  
Huaqiu Guo ◽  
Hongyuan Pan ◽  
...  

As a major marine pollution source, oil spills largely threaten the sustainability of the coastal environment. Polarimetric synthetic aperture radar remote sensing has become a promising approach for marine oil spill detection since it could effectively separate crude oil and biogenic look-alikes. However, on the sea surface, the signal to noise ratio of Synthetic Aperture Radar (SAR) backscatter is usually low, especially for cross-polarized channels. In practice, it is necessary to combine the refined detail of slick-sea boundary derived from the co-polarized channel and the highly accurate crude slick/look-alike classification result obtained based on the polarimetric information. In this paper, the architecture for oil spill detection based on polarimetric SAR is proposed and analyzed. The performance of different polarimetric SAR filters for oil spill classification are compared. Polarimetric SAR features are extracted and taken as the input of Staked Auto Encoder (SAE) to achieve high accurate classification between crude oil, biogenic slicks, and clean sea surface. A post-processing method is proposed to combine the classification result derived from SAE and the refined boundary derived from VV channel power image based on special density thresholding (SDT). Experiments were conducted on spaceborne fully polarimetric SAR images where both crude oil and biogenic slicks were presented on the sea surface.


Sign in / Sign up

Export Citation Format

Share Document