Monitoring of Inundation Dynamics in the North-American Prairie Pothole Region using Sentinel-1 Time Series

Author(s):  
Stefan Schlaffer ◽  
Marco Chini ◽  
Ronald Poppl ◽  
Renaud Hostache ◽  
Patrick Matgen
2009 ◽  
Vol 93 (1-2) ◽  
pp. 243-267 ◽  
Author(s):  
Bruce Millett ◽  
W. Carter Johnson ◽  
Glenn Guntenspergen

2014 ◽  
Vol 18 (14) ◽  
pp. 1-28 ◽  
Author(s):  
Tristan Ballard ◽  
Richard Seager ◽  
Jason E. Smerdon ◽  
Benjamin I. Cook ◽  
Andrea J. Ray ◽  
...  

Abstract The Prairie Pothole Region (PPR) of the northern Great Plains is a vital ecosystem responsible each year for producing 50%–80% of new recruits to the North American duck population. Climate variability and change can impact the hydrology and ecology of the region with implications for waterfowl populations. The historical relationship between PPR wetlands, duck populations, and seasonal hydroclimate are explored. Model experiments from phase 5 of the Coupled Model Intercomparison Project are used to determine whether a recent wetting trend is due to natural variability or changing climate and how PPR hydroclimate will change into the future. Year-to-year variations in May duck populations, pond numbers, and the Palmer drought severity index are well correlated over past decades. Pond and duck numbers tend to increase in spring following La Niña events, but the correlation is not strong. Model simulations suggest that the strengthening of the precipitation gradient across the PPR over the past century is predominantly due to natural variability and therefore could reverse. Model projections of future climate indicate precipitation will increase across the PPR in all seasons except summer, but this gain for surface moisture is largely offset by increased evapotranspiration because of higher temperatures and increased atmospheric evaporative demand. In summer, the combined effects of warming and precipitation changes indicate seasonal surface drying in the future. The presented hydroclimate analyses produce potential inputs to ecological and hydrological simulations of PPR wetlands to inform risk analysis of how this North American waterfowl habitat will evolve in the future, providing guidance to land managers facing conservation decisions.


Land ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 166 ◽  
Author(s):  
Woubet G. Alemu ◽  
Geoffrey M. Henebry ◽  
Assefa M. Melesse

The Prairie Pothole Region (PPR) is a biotically important region of grassland, wetland, and cropland that traverses the Canada-US border. Significant amounts of grasslands and wetlands within the PPR have been converted to croplands in recent years due to increasing demand for biofuels. We characterized land dynamics across the US portion of the PPR (US–PPR) using the USDA Crop Data Layer (CDL) for 2006–2018. We also conducted a comparative analysis between two epochs (1998–2007 & 2008–2017) of the CDL data time series in the North Dakotan portion of the US–PPR. The CDL revealed the western parts of the US–PPR have been dominated by grass/pasture, to the north it was spring wheat, to the east and southern half, soybeans dominated, and to the south it was corn (maize). Nonparametric trend analysis on the major crop and land cover types revealed statistically significant net decreases in the grass/pasture class between 2006 and 2018, which accounts for more than a quarter of grass/pasture area within the US–PPR. Other crops experiencing significant decreases included sunflower (-5%), winter wheat (-3%), spring wheat (-2%), and durum wheat (-1%). The combined coverage of corn and soybeans exhibited significant net increases in 23.5% of its cover; whereas, the individual significant net increases were 5% for corn and 11% for soybeans. Hotspots of increase in corn and soybeans were distributed across North and South Dakota. Other crop/land covers with huge significant increases include other hay/non-alfalfa (15%), and alfalfa (11%), which appear to be associated with the sharp increase in larger dairy operations, mostly in Minnesota. Wetland area increased 5% in the US–PPR, due to increased precipitation as well as inundation associated with Devils Lake in North Dakota. Hotspots of decreasing grass/pasture area were evident across the study area. Comparative trend analysis of two epochs (1998–2007 vs. 2008–2017) in North Dakota revealed that grass/pasture cover showed a negligible net trend (-0.3 %) between 1998 and 2007; whereas, there was a statistically significant decrease of more than 30% between 2008 and 2017. Combined coverage of corn and soybeans experienced statistically significant net increases in both epochs: 11% greater during 1998–2007 and 17% greater during 2008–2017. Recent sharp losses of grasslands and smaller wetlands combined the expansion of corn, soybeans, and alfalfa bode ill for wildlife habitat and require a re-examination of agricultural and energy policies that have encouraged these land transitions.


2018 ◽  
Author(s):  
Jill A. Shaffer ◽  
Cali L. Roth ◽  
David M. Mushet

AbstractBirds are essential components of most ecosystems and provide many services valued by society. However, many populations have undergone striking declines as habitats have been lost or degraded by human activities. Terrestrial grasslands are vital habitat for birds in the North American Prairie Pothole Region (PPR), but grassland conversion and fragmentation from agriculture and energy-production activities have destroyed or degraded millions of hectares. Conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining conservation grasslands on agricultural lands, but conservation grasslands in the PPR have declined by over 1 million ha since the program’s zenith in 2007. We used an ecosystem-services model (InVEST) parameterized for the PPR to quantify grassland-bird habitat remaining in 2014 and to assess degradation status of this remaining habitat as influenced by crop and energy (i.e., oil, natural gas, and wind) production. We compared our resultant habitat-quality ratings to grassland-bird abundance data from the North American Breeding Bird Survey to confirm that ratings were related to grassland-bird abundance. Of the grassland-bird habitat remaining in 2014, about 18% was degraded by nearby crop production, whereas energy production degraded an additional 16%. We further quantified changes in availability of grassland-bird habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2014 levels. Our model identified 1 million ha (9%) of remaining grassland-bird habitat in the PPR that would be lost or degraded if all CRP conservation grasslands were returned to crop production. In addition to direct losses, an economic climate favoring energy and commodity production over conservation has resulted in substantial degradation of remaining grassland-bird habitat across the PPR. Other grassland regions of the world face similar challenges in maintaining avian habitat.


2020 ◽  
Vol 75 (11-12) ◽  
pp. 489-493
Author(s):  
Samatha S. R. Rudrangi ◽  
Thomas P. West

AbstractUsing hydrolysates of the North American prairie grass prairie cordgrass buffered at pH 4.5, 5.0, 5.5 or 6.0, xylitol production, xylitol yield, cell biomass production and productivity were investigated for three strains of yeast Candida. Of the three strains, the highest xylitol concentration of 20.19 g xylitol (g xylose consumed)−1 and yield of 0.89 g xylitol (g xylose consumed)−1 were produced by Candida mogi ATCC 18364 when grown for 120 h at 30° C on the pH 5.5-buffered hydrolysate-containing medium. The highest biomass level being 7.7 g cells (kg biomass)−1 was observed to be synthesized by Candida guilliermondii ATCC 201935 after 120 h of growth at 30° C on a pH 5.5-buffered hydrolysate-containing medium. The highest xylitol specific productivity of 0.73 g xylitol (g cells h)−1 was determined for C. guilliermondii ATCC 20216 after 120 h of growth at 30°C on a pH 5.0-buffered hydrolysate-containing medium. Xylitol production and yield by the three Candida strains was higher on prairie cordgrass than what was previously observed for the same strains after 120 h at 30° C when another North American prairie grass big bluestem served as the plant biomass hydrolysate indicating that prairie cordgrass may be a superior plant biomass substrate.


2011 ◽  
Vol 2 (2) ◽  
pp. 156-168 ◽  
Author(s):  
David G. Krementz ◽  
Kwasi Asante ◽  
Luke W. Naylor

Abstract We used satellite telemetry to document spring migration phenology, routes, stopover regions, and nesting sites of mallards Anas platyrhynchos marked in Arkansas during the winters of 2004–2007. Of the 143 marked mallards that migrated from Arkansas, they did so, on average, by mid-March. Mallards flew over the Missouri Ozarks and 42% made an initial stopover in Missouri, where they used areas that had larger rivers (Mississippi River, Missouri River) embedded in an agricultural landscape. From this stopover region they either migrated directly to the Prairie Pothole Region (PPR) or they migrated north to Minnesota where they either moved next to the PPR or to the north and east of the PPR. For those mallards (83%) that stopped for >1 d before entering the PPR, the average length at each stop was 12 d (SE  =  0.90 d, range  =  2–54 d). Mallards made more stopovers, made shorter migration movements, and took longer to move to the PPR in wetter than drier years. Mallards arrived in the PPR earlier in 2006 (x¯  =  30 March, SE  =  2.18 d) than in 2005 (x¯  =  7 April, SE  =  2.30 d). Females nested across nine Bird Conservation Regions. Nesting occurred most frequently in South Dakota (n  =  9). The average date when females nested was 19 April (SE  =  2.44 d, range  =  12 March–26 May). Because many mallards headed for the large river corridors in Missouri for their first stopover, this region is an important spring migration stopover of continental importance to mallards and might be considered a focal area for conservation.


Sign in / Sign up

Export Citation Format

Share Document