Weight Optimization for Multi-Task Sparse Representation in Sar Image Target Recognition

Author(s):  
Zhi Zhou ◽  
Zongjie Cao ◽  
Yalan Zhang ◽  
Yiming Pi ◽  
Nengyuan Liu
2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Huijie Ding ◽  
Arthur K. L. Lin

Considering the defaults in synthetic aperture radar (SAR) image feature extraction, an SAR target recognition method based on non-subsampled Shearlet transform (NSST) was proposed with application to target recognition. NSST was used to decompose an SAR image into multilevel representations. These representations were translation-invariant, and they could well reflect the dominant and detailed properties of the target. During the machine learning classification stage, the joint sparse representation was employed to jointly represent the multilevel representations. The joint sparse representation could represent individual components independently while considering the inner correlations between different components. Therefore, the precision of joint representation could be enhanced. Finally, the target label of the test sample was determined according to the overall reconstruction error. Experiments were conducted on the MSTAR dataset to examine the proposed method, and the results confirmed its validity and robustness under the standard operating condition, configuration variance, depression angle variance, and noise corruption.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
XiuXia Ji ◽  
Yinan Sun

It is necessary to recognize the target in the situation of military battlefield monitoring and civilian real-time monitoring. Sparse representation-based SAR image target recognition method uses training samples or feature information to construct an overcomplete dictionary, which will inevitably affect the recognition speed. In this paper, a method based on monogenic signal and sparse representation is presented for SAR image target recognition. In this method, the extended maximum average correlation height filter is used to train the samples and generate the templates. The monogenic features of the templates are extracted to construct subdictionaries, and the subdictionaries are combined to construct a cascade dictionary. Sparse representation coefficients of the testing samples over the cascade dictionary are calculated by the orthogonal matching tracking algorithm, and recognition is realized according to the energy of the sparse coefficients and voting recognition. The experimental results suggest that the new approach has good results in terms of recognition accuracy and recognition time.


2021 ◽  
pp. 104070
Author(s):  
Han Hongliang ◽  
Bai Yonglei ◽  
Lu Wei ◽  
Feng Fan ◽  
Wang Jianhua

Sign in / Sign up

Export Citation Format

Share Document