scholarly journals SAR Image Target Recognition Based on Monogenic Signal and Sparse Representation

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
XiuXia Ji ◽  
Yinan Sun

It is necessary to recognize the target in the situation of military battlefield monitoring and civilian real-time monitoring. Sparse representation-based SAR image target recognition method uses training samples or feature information to construct an overcomplete dictionary, which will inevitably affect the recognition speed. In this paper, a method based on monogenic signal and sparse representation is presented for SAR image target recognition. In this method, the extended maximum average correlation height filter is used to train the samples and generate the templates. The monogenic features of the templates are extracted to construct subdictionaries, and the subdictionaries are combined to construct a cascade dictionary. Sparse representation coefficients of the testing samples over the cascade dictionary are calculated by the orthogonal matching tracking algorithm, and recognition is realized according to the energy of the sparse coefficients and voting recognition. The experimental results suggest that the new approach has good results in terms of recognition accuracy and recognition time.


2021 ◽  
pp. 104070
Author(s):  
Han Hongliang ◽  
Bai Yonglei ◽  
Lu Wei ◽  
Feng Fan ◽  
Wang Jianhua




2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Huijie Ding ◽  
Arthur K. L. Lin

Considering the defaults in synthetic aperture radar (SAR) image feature extraction, an SAR target recognition method based on non-subsampled Shearlet transform (NSST) was proposed with application to target recognition. NSST was used to decompose an SAR image into multilevel representations. These representations were translation-invariant, and they could well reflect the dominant and detailed properties of the target. During the machine learning classification stage, the joint sparse representation was employed to jointly represent the multilevel representations. The joint sparse representation could represent individual components independently while considering the inner correlations between different components. Therefore, the precision of joint representation could be enhanced. Finally, the target label of the test sample was determined according to the overall reconstruction error. Experiments were conducted on the MSTAR dataset to examine the proposed method, and the results confirmed its validity and robustness under the standard operating condition, configuration variance, depression angle variance, and noise corruption.





2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhengwu Lu ◽  
Guosong Jiang ◽  
Yurong Guan ◽  
Qingdong Wang ◽  
Jianbo Wu

A synthetic aperture radar (SAR) target recognition method combining multiple features and multiple classifiers is proposed. The Zernike moments, kernel principal component analysis (KPCA), and monographic signals are used to describe SAR image features. The three types of features describe SAR target geometric shape features, projection features, and image decomposition features. Their combined use can effectively enhance the description of the target. In the classification stage, the support vector machine (SVM), sparse representation-based classification (SRC), and joint sparse representation (JSR) are used as the classifiers for the three types of features, respectively, and the corresponding decision variables are obtained. For the decision variables of the three types of features, multiple sets of weight vectors are used for weighted fusion to determine the target label of the test sample. In the experiment, based on the MSTAR dataset, experiments are performed under standard operating condition (SOC) and extended operating conditions (EOCs). The experimental results verify the effectiveness, robustness, and adaptability of the proposed method.



Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4333
Author(s):  
Pengfei Zhao ◽  
Lijia Huang ◽  
Yu Xin ◽  
Jiayi Guo ◽  
Zongxu Pan

At present, synthetic aperture radar (SAR) automatic target recognition (ATR) has been deeply researched and widely used in military and civilian fields. SAR images are very sensitive to the azimuth aspect of the imaging geomety; the same target at different aspects differs greatly. Thus, the multi-aspect SAR image sequence contains more information for classification and recognition, which requires the reliable and robust multi-aspect target recognition method. Nowadays, SAR target recognition methods are mostly based on deep learning. However, the SAR dataset is usually expensive to obtain, especially for a certain target. It is difficult to obtain enough samples for deep learning model training. This paper proposes a multi-aspect SAR target recognition method based on a prototypical network. Furthermore, methods such as multi-task learning and multi-level feature fusion are also introduced to enhance the recognition accuracy under the case of a small number of training samples. The experiments by using the MSTAR dataset have proven that the recognition accuracy of our method can be close to the accruacy level by all samples and our method can be applied to other feather extraction models to deal with small sample learning problems.



2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xin Wang ◽  
Can Tang ◽  
Ji Li ◽  
Peng Zhang ◽  
Wei Wang

An image target recognition approach based on mixed features and adaptive weighted joint sparse representation is proposed in this paper. This method is robust to the illumination variation, deformation, and rotation of the target image. It is a data-lightweight classification framework, which can recognize targets well with few training samples. First, Gabor wavelet transform and convolutional neural network (CNN) are used to extract the Gabor wavelet features and deep features of training samples and test samples, respectively. Then, the contribution weights of the Gabor wavelet feature vector and the deep feature vector are calculated. After adaptive weighted reconstruction, we can form the mixed features and obtain the training sample feature set and test sample feature set. Aiming at the high-dimensional problem of mixed features, we use principal component analysis (PCA) to reduce the dimensions. Lastly, the public features and private features of images are extracted from the training sample feature set so as to construct the joint feature dictionary. Based on joint feature dictionary, the sparse representation based classifier (SRC) is used to recognize the targets. The experiments on different datasets show that this approach is superior to some other advanced methods.





Sign in / Sign up

Export Citation Format

Share Document