A fuzzy clustering algorithm with the criterion of modified objective function for application of automatic target recognition systems

Author(s):  
Wang Shaolin ◽  
Zheng Xiaosong
Author(s):  
GUO-YING LIU ◽  
AI-MIN WANG

In this study, a fuzzy clustering algorithm, MRHMRF-FCM, is proposed to capture and utilize the multiscale spatial constrains by employing multiresolution representations for the label image and the observed image in wavelet domain. In this algorithm, the inner-scale and inter-scale spatial constrains, respectively modeled by the hidden Markov random field models, serve as the penalization terms for the objective function of the FCM algorithm. On each scale, the improved objective function is optimized by taking advantage of Lagrange multipliers, and the final label of wavelet coefficient is determined by iteratively updating the membership degree and cluster centers. The experimental results on synthetic images, natural scenery color images and remote sensed images show that the proposed algorithm obtains much better segmentation results, such as accurately differentiating different regions and being immune to noise.


2013 ◽  
Vol 401-403 ◽  
pp. 1353-1357
Author(s):  
Wu Di Wen ◽  
Zhong Le Liu ◽  
Zhi Qiang Zhang

Magnetic field data of ship has three-component,and traditional weighted fuzzy clustering algorithm(FCA) can’t deal with the three-component data. We improve the traditional FCA by changing the objective function and added weights calculation of three-component of magnetic field in the function.Give the equation to compute the weights of three-component.Put forward new steps for improved algorithm.Use ships’ data to test the improved algorithm and giving the conclusion.


1989 ◽  
Vol 54 (10) ◽  
pp. 2692-2710 ◽  
Author(s):  
František Babinec ◽  
Mirko Dohnal

The problem of transformation of data on the reliability of chemical equipment obtained in particular conditions to other equipment in other conditions is treated. A fuzzy clustering algorithm is defined for this problem. The method is illustrated on a case study.


2021 ◽  
pp. 1-14
Author(s):  
Yujia Qu ◽  
Yuanjun Wang

BACKGROUND: The corpus callosum in the midsagittal plane plays a crucial role in the early diagnosis of diseases. When the anisotropy of the diffusion tensor in the midsagittal plane is calculated, the anisotropy of corpus callosum is close to that of the fornix, which leads to blurred boundary of the segmentation region. OBJECTIVE: To apply a fuzzy clustering algorithm combined with new spatial information to achieve accurate segmentation of the corpus callosum in the midsagittal plane in diffusion tensor images. METHODS: In this algorithm, a fixed region of interest is selected from the midsagittal plane, and the anisotropic filtering algorithm based on tensor is implemented by replacing the gradient direction of the structural tensor with an eigenvector, thus filtering the diffusion tensor of region of interest. Then, the iterative clustering center based on K-means clustering is used as the initial clustering center of tensor fuzzy clustering algorithm. Taking filtered diffusion tensor as input data and different metrics as similarity measures, the neighborhood diffusion tensor pixel calculation method of Log Euclidean framework is introduced in the membership function calculation, and tensor fuzzy clustering algorithm is proposed. In this study, MGH35 data from the Human Connectome Project (HCP) are tested and the variance, accuracy and specificity of the experimental results are discussed. RESULTS: Segmentation results of three groups of subjects in MGH35 data are reported. The average segmentation accuracy is 97.34%, and the average specificity is 98.43%. CONCLUSIONS: When segmenting the corpus callosum of diffusion tensor imaging, our method cannot only effective denoise images, but also achieve high accuracy and specificity.


Sign in / Sign up

Export Citation Format

Share Document