Author(s):  
José A. Carrillo ◽  
Katy Craig ◽  
Li Wang ◽  
Chaozhen Wei

AbstractCombining the classical theory of optimal transport with modern operator splitting techniques, we develop a new numerical method for nonlinear, nonlocal partial differential equations, arising in models of porous media, materials science, and biological swarming. Our method proceeds as follows: first, we discretize in time, either via the classical JKO scheme or via a novel Crank–Nicolson-type method we introduce. Next, we use the Benamou–Brenier dynamical characterization of the Wasserstein distance to reduce computing the solution of the discrete time equations to solving fully discrete minimization problems, with strictly convex objective functions and linear constraints. Third, we compute the minimizers by applying a recently introduced, provably convergent primal dual splitting scheme for three operators (Yan in J Sci Comput 1–20, 2018). By leveraging the PDEs’ underlying variational structure, our method overcomes stability issues present in previous numerical work built on explicit time discretizations, which suffer due to the equations’ strong nonlinearities and degeneracies. Our method is also naturally positivity and mass preserving and, in the case of the JKO scheme, energy decreasing. We prove that minimizers of the fully discrete problem converge to minimizers of the spatially continuous, discrete time problem as the spatial discretization is refined. We conclude with simulations of nonlinear PDEs and Wasserstein geodesics in one and two dimensions that illustrate the key properties of our approach, including higher-order convergence our novel Crank–Nicolson-type method, when compared to the classical JKO method.


Methodology ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 41-60
Author(s):  
Shahab Jolani ◽  
Maryam Safarkhani

Abstract. In randomized controlled trials (RCTs), a common strategy to increase power to detect a treatment effect is adjustment for baseline covariates. However, adjustment with partly missing covariates, where complete cases are only used, is inefficient. We consider different alternatives in trials with discrete-time survival data, where subjects are measured in discrete-time intervals while they may experience an event at any point in time. The results of a Monte Carlo simulation study, as well as a case study of randomized trials in smokers with attention deficit hyperactivity disorder (ADHD), indicated that single and multiple imputation methods outperform the other methods and increase precision in estimating the treatment effect. Missing indicator method, which uses a dummy variable in the statistical model to indicate whether the value for that variable is missing and sets the same value to all missing values, is comparable to imputation methods. Nevertheless, the power level to detect the treatment effect based on missing indicator method is marginally lower than the imputation methods, particularly when the missingness depends on the outcome. In conclusion, it appears that imputation of partly missing (baseline) covariates should be preferred in the analysis of discrete-time survival data.


Sign in / Sign up

Export Citation Format

Share Document