scholarly journals Pattern classification by an incremental learning fuzzy neural network

Author(s):  
O. Yen ◽  
P. Meesad
2019 ◽  
Vol 3 (2) ◽  
pp. 22 ◽  
Author(s):  
Augusto Junio Guimarães ◽  
Paulo Vitor de Campos Souza ◽  
Vinícius Jonathan Silva Araújo ◽  
Thiago Silva Rezende ◽  
Vanessa Souza Araújo

Human papillomavirus (HPV) infection is related to frequent cases of cervical cancer and genital condyloma in humans. Up to now, numerous methods have come into existence for the prevention and treatment of this disease. In this context, this paper aims to help predict the susceptibility of the patient to forms treatment using both cryotherapy and immunotherapy. These studies facilitate the choice of medications, which can be painful and embarrassing for patients who have warts on intimate parts. However, the use of intelligent models generates efficient results but does not allow a better interpretation of the results. To solve the problem, we present the method of a fuzzy neural network (FNN). A hybrid model capable of solving complex problems and extracting knowledge from the database will pruned through F-score techniques to perform pattern classification in the treatment of warts, and to produce a specialist system based on if/then rules, according to the experience obtained from the database collected through medical research. Finally, binary pattern-classification tests realized in the FNN and compared with other models commonly used for classification tasks capture results of greater accuracy than the current state of the art for this type of problem (84.32% for immunotherapy, and 88.64% for cryotherapy), and extract fuzzy rules from the problem database. It was found that the hybrid approach based on neural networks and fuzzy systems can be an excellent tool to aid the prediction of cryotherapy and immunotherapy treatments.


2002 ◽  
Vol 130 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Rui-Ping Li ◽  
Masao Mukaidono ◽  
I.Burhan Turksen

2006 ◽  
Vol 14 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Chin-Teng Lin ◽  
Chang-Mao Yeh ◽  
Sheng-Fu Liang ◽  
Jen-Feng Chung ◽  
N. Kumar

2020 ◽  
Vol 167 ◽  
pp. 2606-2616 ◽  
Author(s):  
Arun Kulkarni ◽  
Nikita kulkarni

Computation ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Muhammad Anwar Ma’sum ◽  
Hadaiq Rolis Sanabila ◽  
Petrus Mursanto ◽  
Wisnu Jatmiko

One of the challenges in machine learning is a classification in multi-modal data. The problem needs a customized method as the data has a feature that spreads in several areas. This study proposed a multi-codebook fuzzy neural network classifiers using clustering and incremental learning approaches to deal with multi-modal data classification. The clustering methods used are K-Means and GMM clustering. Experiment result, on a synthetic dataset, the proposed method achieved the highest performance with 84.76% accuracy. Whereas on the benchmark dataset, the proposed method has the highest performance with 79.94% accuracy. The proposed method has 24.9% and 4.7% improvements in synthetic and benchmark datasets respectively compared to the original version. The proposed classifier has better accuracy compared to a popular neural network with 10% and 4.7% margin in synthetic and benchmark dataset respectively.


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


Sign in / Sign up

Export Citation Format

Share Document