Data augmentation using a combination of independent component analysis and non-linear time-series prediction

Author(s):  
T. Eltoft
Author(s):  
Hoang Minh Nguyen ◽  
Gaurav Kalra ◽  
Taejoon Jun ◽  
Daeyoung Kim

This paper presents a novel Echo State Network (ESN) model for chaotic time series prediction, which consists of three steps including input reconstruction, dimensionality reduction and regression. First, phase-space reconstruction is used to reconstruct the original ‘attractor’ of the input time series. Then, Independent Component Analysis (ICA) is used to identify independent components, reduce dimensionality and overcome multicollinearity problem of the reconstructed input matrix. Finally, Bayesian Ridge Regression provides accurate predictions thanks to its regularization effect to avoid over-fitting and its robustness to noise owing to its probabilistic strategy. Our experimental results show that our model significantly outperforms other ESN models in predicting both artificial and real-world chaotic time series.


2007 ◽  
Vol 19 (7) ◽  
pp. 1962-1984 ◽  
Author(s):  
Roberto Baragona ◽  
Francesco Battaglia

In multivariate time series, outlying data may be often observed that do not fit the common pattern. Occurrences of outliers are unpredictable events that may severely distort the analysis of the multivariate time series. For instance, model building, seasonality assessment, and forecasting may be seriously affected by undetected outliers. The structure dependence of the multivariate time series gives rise to the well-known smearing and masking phenomena that prevent using most outliers' identification techniques. It may be noticed, however, that a convenient way for representing multiple outliers consists of superimposing a deterministic disturbance to a gaussian multivariate time series. Then outliers may be modeled as nongaussian time series components. Independent component analysis is a recently developed tool that is likely to be able to extract possible outlier patterns. In practice, independent component analysis may be used to analyze multivariate observable time series and separate regular and outlying unobservable components. In the factor models framework too, it is shown that independent component analysis is a useful tool for detection of outliers in multivariate time series. Some algorithms that perform independent component analysis are compared. It has been found that all algorithms are effective in detecting various types of outliers, such as patches, level shifts, and isolated outliers, even at the beginning or the end of the stretch of observations. Also, there is no appreciable difference in the ability of different algorithms to display the outlying observations pattern.


2011 ◽  
Vol 18 (6) ◽  
pp. 925-940 ◽  
Author(s):  
E. De Lauro ◽  
S. De Martino ◽  
M. Falanga ◽  
M. Palo

Abstract. We investigate the physical processes associated with volcanic tremor and explosions. A volcano is a complex system where a fluid source interacts with the solid edifice so generating seismic waves in a regime of low turbulence. Although the complex behavior escapes a simple universal description, the phases of activity generate stable (self-sustained) oscillations that can be described as a non-linear dynamical system of low dimensionality. So, the system requires to be investigated with non-linear methods able to individuate, decompose, and extract the main characteristics of the phenomenon. Independent Component Analysis (ICA), an entropy-based technique is a good candidate for this purpose. Here, we review the results of ICA applied to seismic signals acquired in some volcanic areas. We emphasize analogies and differences among the self-oscillations individuated in three cases: Stromboli (Italy), Erebus (Antarctica) and Volcán de Colima (Mexico). The waveforms of the extracted independent components are specific for each volcano, whereas the similarity can be ascribed to a very general common source mechanism involving the interaction between gas/magma flow and solid structures (the volcanic edifice). Indeed, chocking phenomena or inhomogeneities in the volcanic cavity can play the same role in generating self-oscillations as the languid and the reed do in musical instruments. The understanding of these background oscillations is relevant not only for explaining the volcanic source process and to make a forecast into the future, but sheds light on the physics of complex systems developing low turbulence.


Sign in / Sign up

Export Citation Format

Share Document