Nonlinear adaptive flight control using sliding mode online learning

Author(s):  
Thomas Kruger ◽  
Philipp Schnetter ◽  
Robin Placzek ◽  
Peter Vorsmann
2012 ◽  
Vol 32 ◽  
pp. 267-274 ◽  
Author(s):  
Thomas Krüger ◽  
Philipp Schnetter ◽  
Robin Placzek ◽  
Peter Vörsmann

2013 ◽  
Author(s):  
Philipp Schnetter ◽  
Michael Marcinek ◽  
Thomas Krueger ◽  
Peter Voersmann

Author(s):  
Syed Aseem Ul Islam ◽  
Adam L. Bruce ◽  
Tam W. Nguyen ◽  
Ilya Kolmanovsky ◽  
Dennis Bernstein

Author(s):  
Majeed Mohamed ◽  
Madhavan Gopakumar

The evolution of large transport aircraft is characterized by longer fuselages and larger wingspans, while efforts to decrease the structural weight reduce the structural stiffness. Both effects lead to more flexible aircraft structures with significant aeroelastic coupling between flight mechanics and structural dynamics, especially at high speed, high altitude cruise. The lesser frequency separation between rigid body and flexible modes of flexible aircraft results in a stronger interaction between the flight control system and its structural modes, with higher flexibility effects on aircraft dynamics. Therefore, the design of a flight control law based on the assumption that the aircraft dynamics are rigid is no longer valid for the flexible aircraft. This paper focuses on the design of a flight control system for flexible aircraft described in terms of a rigid body mode and four flexible body modes and whose parameters are assumed to be varying. In this paper, a conditional integral based sliding mode control (SMC) is used for robust tracking control of the pitch angle of the flexible aircraft. The performance of the proposed nonlinear flight control system has been shown through the numerical simulations of the flexible aircraft. Good transient and steady-state performance of a control system are also ensured without suffering from the drawback of control chattering in SMC.


2014 ◽  
Vol 651-653 ◽  
pp. 751-756
Author(s):  
Peng Fei Cheng ◽  
Cheng Fu Wu ◽  
Yue Guo

This paper develops a high-sideslip flight control scheme based on model reference adaptive control (MRAC) to stabilize aircraft under aileron deadlock of one side. Firstly, the cascaded flight control scheme for high-sideslip straight flight is presented and how the control signals transfer is also analyzed. After that, the control structure and laws of MRAC for attitude inner-loop connected with sideslip command are designed. Finally, the control scheme is verified under a nonlinear aircraft model in conditions of no fault and one side aileron deadlock respectively. The simulation results show that when one side aileron deadlock occurs in accompany with the plant’s aerodynamic data perturbation and random initialization of controller parameters, this control method could utilize operation points of no-fault aircraft to force the faulty aircraft following the given reference model responses and finally tracking given sideslip angle command without static error robustly.


Sign in / Sign up

Export Citation Format

Share Document