GPU implementation of the feedforward neural network with modified Levenberg-Marquardt algorithm

Author(s):  
Bacek Tomislav ◽  
Dubravko Majetic ◽  
Danko Brezak
Robotica ◽  
2019 ◽  
Vol 38 (10) ◽  
pp. 1737-1755 ◽  
Author(s):  
Abdel-Nasser Sharkawy ◽  
Panagiotis N. Koustoumpardis ◽  
Nikos Aspragathos

SUMMARYIn this paper, a multilayer feedforward neural network (NN) is designed and trained, for human–robot collisions detection, using only the intrinsic joint position sensors of a manipulator. The topology of one NN is designed considering the coupled dynamics of the robot and trained, with and without external contacts, by Levenberg–Marquardt algorithm to detect unwanted collisions of the human operator with the manipulator and the link that is collided. The proposed approach could be applied to any industrial robot, where only the joint position signals are available. The designed NN is compared quantitatively and qualitatively with an NN, where both the intrinsic joint position and the torque sensors of the manipulator are used. The proposed method is evaluated experimentally with the KUKA LWR manipulator, which is considered as an example of the collaborative robots, using two of its joints in a planar horizontal motion. The results illustrate that the developed system is efficient and fast to detect the collisions and identify the collided link.


2020 ◽  
Vol 71 (6) ◽  
pp. 66-74
Author(s):  
Younis M. Younis ◽  
Salman H. Abbas ◽  
Farqad T. Najim ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

A comparison between artificial neural network (ANN) and multiple linear regression (MLR) models was employed to predict the heat of combustion, and the gross and net heat values, of a diesel fuel engine, based on the chemical composition of the diesel fuel. One hundred and fifty samples of Iraqi diesel provided data from chromatographic analysis. Eight parameters were applied as inputs in order to predict the gross and net heat combustion of the diesel fuel. A trial-and-error method was used to determine the shape of the individual ANN. The results showed that the prediction accuracy of the ANN model was greater than that of the MLR model in predicting the gross heat value. The best neural network for predicting the gross heating value was a back-propagation network (8-8-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.98502 for the test data. In the same way, the best neural network for predicting the net heating value was a back-propagation network (8-5-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.95112 for the test data.


Sign in / Sign up

Export Citation Format

Share Document