Weighted area coverage of maritime joint search and rescue based on multi-agent reinforcement learning

Author(s):  
Yingying Gao ◽  
Guangyin Jin ◽  
Yu Guo ◽  
Guohai Zhu ◽  
Qingqing Yang ◽  
...  
Author(s):  
Akkhachai Phuphanin ◽  
Wipawee Usaha

Coverage control is crucial for the deployment of wireless sensor networks (WSNs). However, most coverage control schemes are based on single objective optimization such as coverage area only, which do not consider other contradicting objectives such as energy consumption, the number of working nodes, wasteful overlapping areas. This paper proposes on a Multi-Objective Optimization (MOO) coverage control called Scalarized Q Multi-Objective Reinforcement Learning (SQMORL). The two objectives are to achieve the maximize area coverage and to minimize the overlapping area to reduce energy consumption. Performance evaluation is conducted for both simulation and multi-agent lighting control testbed experiments. Simulation results show that SQMORL can obtain more efficient area coverage with fewer working nodes than other existing schemes.  The hardware testbed results show that SQMORL algorithm can find the optimal policy with good accuracy from the repeated runs.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 33511-33521 ◽  
Author(s):  
Jian Xiao ◽  
Gang Wang ◽  
Ying Zhang ◽  
Lei Cheng

Author(s):  
Hao Jiang ◽  
Dianxi Shi ◽  
Chao Xue ◽  
Yajie Wang ◽  
Gongju Wang ◽  
...  

Author(s):  
Xiaoyu Zhu ◽  
Yueyi Luo ◽  
Anfeng Liu ◽  
Md Zakirul Alam Bhuiyan ◽  
Shaobo Zhang

2021 ◽  
Vol 11 (11) ◽  
pp. 4948
Author(s):  
Lorenzo Canese ◽  
Gian Carlo Cardarilli ◽  
Luca Di Di Nunzio ◽  
Rocco Fazzolari ◽  
Daniele Giardino ◽  
...  

In this review, we present an analysis of the most used multi-agent reinforcement learning algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the most critical issues that must be taken into account in their extension to multi-agent scenarios. The analyzed algorithms were grouped according to their features. We present a detailed taxonomy of the main multi-agent approaches proposed in the literature, focusing on their related mathematical models. For each algorithm, we describe the possible application fields, while pointing out its pros and cons. The described multi-agent algorithms are compared in terms of the most important characteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability, and observability. We also describe the most common benchmark environments used to evaluate the performances of the considered methods.


Sign in / Sign up

Export Citation Format

Share Document