Transmission Line Model for a Series fed Log-periodic Microstrip Antenna array

Author(s):  
Arjuna Muduli ◽  
Rabindra K Mishra
Author(s):  
Nandan Bhattacharyya ◽  
Jawad Yaseen Siddiqui

The microstrip antenna (MSA) consists of a dielectric substrate in between a metallic conducting patch and a ground plane. The most common forms of the MSA are the rectangular and circular patch MSAs. There are several microstrip antenna analysis methods. The most popular models are transmission-line model, cavity model, method of moments, FDTD method, and finite element method. The transmission-line model is the simplest of these methods, and it provides good physical insight but is less accurate. The cavity model is more accurate compared to the transmission-line model, but cavity model is more complex. Though cavity model gives good physical insight, it is rather difficult to model coupling. The full-wave models (which include primarily integral equations/moment method) are very accurate, very versatile, but they are the most complex models and usually give less physical insight. This chapter explores the microstrip antenna.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
S. Didouh ◽  
M. Abri ◽  
F. T. Bendimerad

A transmission line model is used to design corporate-fed multilayered bow-tie antennas arrays; the simulated antennas arrays are designed to resonate at the frequencies 2.4 GHz, 5 GHz, and 8 GHz corresponding to RFID, WIFI, and radars applications. The contribution of this paper consists of modeling multilayer bow-tie antenna array fed through an aperture using transmission line model. The transmission line model is simple and precise and allows taking into account the whole geometrical, electrical, and technological characteristics of the antennas arrays. The proposed transmission line model showed its interest in the design of different multilayered bow-tie antennas and predicted the correct resonance frequency for different applications in telecommunications. To validate the proposed transmission line model, the simulation results obtained are compared with those obtained by the method of moments. The results of simulations are presented and discussed. Using this transmission line approach, the resonant frequency, input impedance, and return loss can be determined simultaneously. The paper reports several simulation results that confirm the validity of the developed model. The obtained results are then presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document