higher order modes
Recently Published Documents


TOTAL DOCUMENTS

655
(FIVE YEARS 134)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Hasan Aldiabat ◽  
Nedal Al-ababneh

In this paper, the bandwidth density of misaligned free space optical interconnects (FSOIs) system with and without coding under a fixed bit error rate is considered. In particular, we study the effect of using error correction codes of various codeword lengths on the bandwidth density and misalignment tolerance of the FSOIs system in the presence of higher order modes. Moreover, the paper demonstrates the use of the fill factor of the detector array as a design parameter to optimize the bandwidth density of the communication. The numerical results demonstrate that the bandwidth density improves significantly with coding and the improvement is highly dependent on the used codeword length and code rate. In addition, the results clearly show the optimum fill factor values that achieve the maximum bandwidth density and misalignment tolerance of the system.


2022 ◽  
Author(s):  
Linhui Ding ◽  
Ningning Wang ◽  
Leiming Chen ◽  
Kui Han ◽  
Xiaopeng Shen ◽  
...  

Abstract Plasmonics in two-dimensional materials, an emerging direction of nano-optics, has attracted great attention recently, which exhibits unique properties than that in noble metals. Extending its advanced features by different manipulations is very beneficial for its promotion. In this paper, we study plasmonic excitations in graphene and black phosphorus (BP) nanostructures, where the effects of structural symmetry and material anisotropy are discussed. We show that the two factors are crucial to mode excitations, e.g. the extinction can be dominated by higher order modes rather than dipole resonance. The behavior occurs only in the direction hosting larger resonance frequencies, e.g. armchair (AC) direction of BP and shorter side of graphene rectangles. In BP rectangles along AC direction, the two factors are competing, and thus can be applied cooperatively to tune plasmonic resonance, from dipole to higher order excitations. Besides, the manipulation can also be achieved by designing BP square rings, in which the interaction between outer and inner edges show great impact on mode excitations. Our studies further promote the understanding of plasmonics in two-dimensional materials, and will pave the way for particular plasmonic applications.


2021 ◽  
Vol 2 ◽  
Author(s):  
Jack Haines ◽  
Marco Gandolfi ◽  
Yohann Franz ◽  
Costantino De Angelis ◽  
Massimiliano Guasoni

We investigate theoretically mid-infrared (MIR) generation via difference frequency generation in multimode AlGaAs-on insulator (AlGaAs-OI) waveguides. The large refractive index difference between the AlGaAs core and the silica cladding shrinks the modes size down to the sub-μm2 scale, and, together with AlGaAs strong second-order nonlinear polarization, empowers strong nonlinear effects. As a result, efficient MIR generation is obtained in few-cm long waveguides with sub-μm2 transverse section, where higher order modes are exploited to achieve the phase-matching condition. These observations suggest that multimode AlGaAs-OI waveguides could represent a novel promising platform for on-chip, compact MIR sources.


2021 ◽  
Author(s):  
Pratik Mishra ◽  
Hemant Kumar ◽  
Subrat Sahu ◽  
Rajan jha

Abstract Optical segments based flexible systems are the key for the development of futuristic advanced wearable devices for health monitoring, robotics, and ultraprecision positioning in industrial applications. Here, we have demonstrated an processed optical microfiber based multifunctional sensing system, which overcomes the various limitations of most widely reported electronics and material-based flexible devices. By optimizing the position of the post processed microfiber configuration in optimized Polydimethylsiloxane (PDMS) thickness and controlling the interference between the fundamental mode and higher order modes of microfiber to form and tunable interference pattern, we are able to make an efficient, simple, flexible and economical optical wearable vector bending system with a sensitivity as high as 1.01nm/degree. In addition, this skinmountable sensing sensor shows a remarkable and ultrasensitivity of -3.07 nm/oC. This ultrahigh sensitivity, mechanical robustness, with the excellent flexible and biocompatible nature also makes this sensing system a dominant candidate for wearable medical devices for elder-care facilities, physioclogical monitoring, athletic training, and rehabilitation program.


2021 ◽  
Vol 923 (1) ◽  
pp. L1
Author(s):  
Justin Janquart ◽  
Eungwang Seo ◽  
Otto A. Hannuksela ◽  
Tjonnie G. F. Li ◽  
Chris Van Den Broeck

Abstract Similarly to light, gravitational waves can be gravitationally lensed as they propagate near massive astrophysical objects such as galaxies, stars, or black holes. In recent years, forecasts have suggested a reasonable chance of strong gravitational-wave lensing detections with the LIGO–Virgo–KAGRA detector network at design sensitivity. As a consequence, methods to analyze lensed detections have seen rapid development. However, the impact of higher-order modes on the lensing analyses is still under investigation. In this work, we show that the presence of higher-order modes enables the identification of individual image types for the observed gravitational-wave events when two lensed images are detected, which would lead to unambiguous confirmation of lensing. In addition, we show that higher-order mode content can be analyzed more accurately with strongly lensed gravitational-wave events.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 65-71
Author(s):  
N. A. Pevneva ◽  
D. A. Kondrashov ◽  
A. L. Gurskii ◽  
A. V. Gusinsky

A modified Nicholson – Ross – Weir method was used to determine complex parameters and dielectric permittivity of ceramic materials in the range 78.33–118.1 GHz. The measuring equipment is a meter of complex reflection and transmission coefficients, a waveguide measuring canal with a special measuring cell, consisting of two irregular waveguides and a waveguide chamber between them, which provides insignificant influence of higher-order modes. The dependences of the amplitude and phase of the reflection and transmission coefficients on frequency were obtained experimentally for fluoroplastic and three ceramic samples in the frequency range 78.33–118.1 GHz. The obtained S-parameters are processed according to an algorithm that includes their averaging based on the Fourier transform in order to obtain the values of the dielectric permittivity. Fluoroplastic was used as a reference material with a known dielectric constant. The dielectric constant of fluoroplastic has a stable value of 2.1 in the above mentioned frequency range. The dielectric constant of sample No. 1 varies from 3.6 to 2.5 at the boundaries of the range, sample No. 2 – from 3.7 to 2.1, sample No. 3 – from 2.9 to 1.5. The experimental data are in satisfactory agreement with the literature data for other frequencies taking into account the limits set by the measurement uncertainty.


2021 ◽  
Author(s):  
Bin Liu ◽  
Ma-Long Hu ◽  
Yi-Wen Zhang ◽  
Yue You ◽  
Zhao-Guo Liang ◽  
...  

Abstract We theoretically study the near-field couplings of two stacked all-dielectric nanodisks, where each disk has an electric anapole mode consisting of an electric dipole mode and an electric toroidal dipole (ETD) mode. Strong bonding and anti-bonding hybridizations of the ETD modes of the two disks can occur. The bonding-hybridized ETD can interfere with the dimer's electric dipole mode and induce a new electric anapole mode. The anti-bonding hybridization of the ETD modes can induce a magnetic toroidal dipole (MTD) response in the disk dimer. The MTD and magnetic dipole resonances of the dimer form a magnetic anapole mode. Thus, two dips associated with the hybridized modes appear on the scattering spectrum of the dimer. Furthermore, the MTD mode is also accompanied by an electric toroidal quadrupole mode. The hybridizations of the ETD and the induced higher-order modes can be adjusted by varying the geometries of the disks. The strong anapole mode couplings and the corresponding rich higher-order mode responses in simple all-dielectric nanostructures can provide new opportunities for nanoscale optical manipulations.


2021 ◽  
Vol 247 ◽  
pp. 113134
Author(s):  
E. Tubaldi ◽  
F. Scozzese ◽  
D. De Domenico ◽  
A. Dall'Asta

Sign in / Sign up

Export Citation Format

Share Document