scholarly journals Feature extraction for human activity recognition on streaming data

Author(s):  
Nawel Yala ◽  
Belkacem Fergani ◽  
Anthony Fleury
Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3731 ◽  
Author(s):  
Wen Qi ◽  
Hang Su ◽  
Chenguang Yang ◽  
Giancarlo Ferrigno ◽  
Elena De Momi ◽  
...  

As a significant role in healthcare and sports applications, human activity recognition (HAR) techniques are capable of monitoring humans’ daily behavior. It has spurred the demand for intelligent sensors and has been giving rise to the explosive growth of wearable and mobile devices. They provide the most availability of human activity data (big data). Powerful algorithms are required to analyze these heterogeneous and high-dimension streaming data efficiently. This paper proposes a novel fast and robust deep convolutional neural network structure (FR-DCNN) for human activity recognition (HAR) using a smartphone. It enhances the effectiveness and extends the information of the collected raw data from the inertial measurement unit (IMU) sensors by integrating a series of signal processing algorithms and a signal selection module. It enables a fast computational method for building the DCNN classifier by adding a data compression module. Experimental results on the sampled 12 complex activities dataset show that the proposed FR-DCNN model is the best method for fast computation and high accuracy recognition. The FR-DCNN model only needs 0.0029 s to predict activity in an online way with 95.27% accuracy. Meanwhile, it only takes 88 s (average) to establish the DCNN classifier on the compressed dataset with less precision loss 94.18%.


Author(s):  
Jozsef Suto ◽  
Stefan Oniga ◽  
Petrica Pop Sitar

Human activity recognition (HAR) is one of those research areas whose importance and popularity have notably increased in recent years. HAR can be seen as a general machine learning problem which requires feature extraction and feature selection. In previous articles different features were extracted from time, frequency and wavelet domains for HAR but it is not clear that, how to determine the best feature combination which maximizes the performance of a machine learning algorithm. The aim of this paper is to present the most relevant feature extraction methods in HAR and to compare them with widely-used filter and wrapper feature selection algorithms. This work is an extended version of [1]a where we tested the efficiency of filter and wrapper feature selection algorithms in combination with artificial neural networks. In this paper the efficiency of selected features has been investigated on more machine learning algorithms (feed-forward artificial neural network, k-nearest neighbor and decision tree) where an independent database was the data source. The result demonstrates that machine learning in combination with feature selection can overcome other classification approaches.


Sign in / Sign up

Export Citation Format

Share Document