Congestion control algorithm for high speed networks with end system awareness

Author(s):  
Israr Ullah ◽  
Raees Khan
2005 ◽  
Vol 48 (6) ◽  
pp. 972-989 ◽  
Author(s):  
E. Altman ◽  
K. Avrachenkov ◽  
C. Barakat ◽  
A.A. Kherani ◽  
B.J. Prabhu

Author(s):  
Sarah N. Abdulwahid

The delivered effort in this manuscript is grounded on NS-2 (The Network Simulator 2) to implement the congestion control process of classic TCP (Transmission Control Protocol), with new congestion control mechanism. In this paper, a novel congestion control algorithm is offered, which contains of slow-start and congestion avoidance mechanisms. The proposed slow-start algorithm assumes a duplicating and an interpolating approach to the congestion window (cwnd) for each increment instead of the exponential increment used by other TCP source variants such as Reno, Vega, Tahoe, Newreno, Fack, and Sack. Furthermore, the enhanced congestion avoidance algorithm is built by using an improved Additive Increase Multiplicative Decrease (AIMD) algorithm with multi TCP flow facility, to provide an enhanced congestion control algorithm with some valuable properties to improve TCP routine for high speed protocols. The improvement strategy based on merging of slow start, congestion avoidance mechanism that are used in TCP congestion control, to create a new AIMD algorithm with a new relationship between the pair parameters a and b. This paper is also involved in the creation of rapid agent in NS-2 models designed to identify the modified TCP and to configure the NS-2 platform. A fast TCP also includes an innovative scheme to slow the rapid start to help TCP to start faster through the high speed networks and also to postpone the congestion state as much as possible.


Author(s):  
Sarah N. Abdulwahid

The delivered effort in this manuscript is grounded on NS-2 (The Network Simulator 2) to implement the congestion control process of classic TCP (Transmission Control Protocol), with new congestion control mechanism. In this paper, a novel congestion control algorithm is offered, which contains of slow-start and congestion avoidance mechanisms. The proposed slow-start algorithm assumes a duplicating and an interpolating approach to the congestion window (cwnd) for each increment instead of the exponential increment used by other TCP source variants such as Reno, Vega, Tahoe, Newreno, Fack, and Sack. Furthermore, the enhanced congestion avoidance algorithm is built by using an improved Additive Increase Multiplicative Decrease (AIMD) algorithm with multi TCP flow facility, to provide an enhanced congestion control algorithm with some valuable properties to improve TCP routine for high speed protocols. The improvement strategy based on merging of slow start, congestion avoidance mechanism that are used in TCP congestion control, to create a new AIMD algorithm with a new relationship between the pair parameters a and b. This paper is also involved in the creation of rapid agent in NS-2 models designed to identify the modified TCP and to configure the NS-2 platform. A fast TCP also includes an innovative scheme to slow the rapid start to help TCP to start faster through the high speed networks and also to postpone the congestion state as much as possible.


Sign in / Sign up

Export Citation Format

Share Document