Magnescope: A poratble magnetic inspection system for evaluation of steel structures and components

Author(s):  
D.C. Jiles ◽  
S. Hariharan ◽  
M.K. Devine
Author(s):  
Vitaly М. Goritsky ◽  
◽  
Georgy R. Shneyderov ◽  
Eugeny P. Studenov ◽  
Olga A. Zadubrovskaya ◽  
...  

Determination of causes of crack-like defects in the heavy plate steel 09Г2С is a crucial task, the solution of which is aimed at improving the mechanical safety of oil storage steel vertical tanks. In order to determine the causes for the formation of a group of crack-like defects oriented towards rolling, revealed during grinding and magnetic inspection of the tank wall surface near the vertical weld, the analysis of the chemical composition and testing of the mechanical properties of heavy plate steel were carried out, including the determination of the anisotropy of impact toughness in the temperature range from +20 to –75 °С, analysis of metal microstructure in the area of defect formation on transversal sections and rolled surface. Impact bending tests of 09Г2С heavy plate steel after controlled rolling in longitudinal and transverse directions showed no anisotropy of impact toughness, as well as high purity of steel as for sulfur and titanium, which at higher content causes impact toughness anisotropy. The revealed features of metal microstructure near the defects made it possible to conclude that the crack-like defects were formed during the rolling of gas bubbles at the stage of preparing semi-finished rolled products for finishing rolling. One of the possible methods to prevent such defects from getting into finished rolled products is the use of automated systems of visual inspection of rolled products in the manufacturing process.


1994 ◽  
Author(s):  
Xiang Yu ◽  
Xiulan Liu ◽  
Juheng Xing ◽  
Jianbin Gao ◽  
Yuhua Yin ◽  
...  

2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Klaus Pottler ◽  
Marc Röger ◽  
Eckhard Lüpfert ◽  
Wolfgang Schiel

The construction of solar thermal power plants with several thousand m2 of collector area requires quality control measures for components, subsystems, and the entire collector rows. While quality control has a significant potential to increase the solar field efficiency, the main objective is to assure high-quality standards for the whole solar field. Quality control, assembly documentation, and performance measurements are required by the investors. Based on previous R&D work in collector development and prototype qualification, measurement systems have been developed for use in solar field construction and operation supervision. In particular, close-range photogrammetry can be used to measure the geometry of collector steel structures. The measurement system consists of a digital camera, which moves around the structure automatically while shooting photos of the concentrator structure from various positions. The photos are evaluated with photogrammetry software to check the assembly quality. The whole measurement and evaluation procedure is computer controlled and is fast enough to be integrated in a solar collector production line. This paper deals with the required measurement accuracy and shows ways to reach, maintain, and control this accuracy in the rough environment of an on-site production line.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


2016 ◽  
Vol 12 (1) ◽  
pp. 28-35
Author(s):  
H.M. Nykyforchyn ◽  
◽  
V.A. Chervatyuk ◽  
V.I. Marukha ◽  
Z.V. Slobodyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document