controlled rolling
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 43)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 905 ◽  
pp. 78-82
Author(s):  
Lu Lu Feng ◽  
Wei Wen Qiao ◽  
Zeng Qiang Song ◽  
Zhi Mei Cao ◽  
Yan Jun Yang ◽  
...  

The production process, microstructure, and mechanical properties of 15MnNbR pressure vessel steel were studied by optical microscopy, universal tensile testing, and low-temperature impact toughness testing. It was found that the microstructure obtained after controlled rolling and cooling (known as thermo-mechanical control processing) consisted of ferrite and pearlite with non-uniform grain size. The banded microstructure was prominent, the strength was high, and the toughness was poor. After normalizing, the grain size was refined, both the microstructural uniformity and the banded microstructure were improved, and the strength and toughness of the steel were enhanced. After normalizing and water cooling, the grain was further refined, the microstructure was homogenized, the banded microstructure disappeared, and the strength and toughness of the test steel were improved simultaneously, resulting in excellent comprehensive mechanical properties.


Author(s):  
Mehdi Soltan Ali Nezhad ◽  
Sadegh Ghazvinian ◽  
Mahmoud Amirsalehi ◽  
Amir Momeni

Abstract Three steels were designed based on HSLA-100 with additional levels of Mn, Ni, Cr and Cu. The steels were prepared by controlled rolling and tempered at temperatures in range of 550–700°C. The continuous cooling time curves were shifted to longer times and lower temperatures with the increased tendency for the formation of martensite at lower cooling rates. The microstructures revealed that controlled rolling results in austenite with uniform fine grain structure. The steel with the highest amount of Mn showed the greatest strength after tempering at 750 °C. The top strength was attributed to the formation of Cu-rich particles. The steel with 1.03 wt.% Mn, tempered at 650 °C exhibited the best Charpy impact toughness at –85°C. On the other hand, the steel that contained 2.11 wt.% Mn and tempered at 700 °C showed the highest yield strength of 1 097.5 MPa (∼159 ksi) and an impact toughness of 41.6 J at –85°C.


2021 ◽  
Vol 2044 (1) ◽  
pp. 012095
Author(s):  
Guanghua Zhang ◽  
Jietao Dai ◽  
Ju Yan ◽  
Liejun Li

Author(s):  
L.M. Deineko ◽  
A.Yu. Borysenko ◽  
A.О. Taranenko ◽  
T.O. Zaitseva ◽  
N.S. Romanova

Problem statement. In recent decades, there has been a tendency to increase the mechanical properties of low-carbon, low-alloyed steel plate iron by using controlled rolling or hardening heat treatment of finished steel parts. At the same time, for welded parts, the most suitable is a metal having a ferrite-bainite (or bainite) structure. The work investigated the features of the ferrite-bainite structure of low-carbon and low-alloyed steel 15ХСНД for the production of connecting pipeline parts. Purpose of the article. To establish the laws of formation of a ferritic-bainitic structure in low-carbon low-alloy steels depending on the parameters of heat treatment. Determine the effect of heat treatment parameters on the properties of the connecting parts of pipelines made of these steels. Conclusion. The regularities of the influence of heat treatment parameters on the structure, mechanical properties and topography of fractures of impact samples of 15ХСНД steel with a ferrite-bainitic structure are established. Keywords: stamped-welded connecting parts of man pipelines; heat treatment; microstructure; bainite;mechanical properties; fractography


Sign in / Sign up

Export Citation Format

Share Document