A new approach to fault-tolerant wormhole routing for mesh-connected parallel computers

Author(s):  
Ching-Tien Ho ◽  
L. Stockmeyer



2001 ◽  
Vol 24 (15-16) ◽  
pp. 1589-1606 ◽  
Author(s):  
H.S. Laskaridis ◽  
A.A. Veglis ◽  
G.I. Papadimitriou ◽  
A.S. Pombortsis


1998 ◽  
Vol 09 (01) ◽  
pp. 25-37 ◽  
Author(s):  
THOMAS J. CORTINA ◽  
ZHIWEI XU

We present a family of interconnection networks named the Cube-Of-Rings (COR) networks along with their basic graph-theoretic properties. Aspects of group graph theory are used to show the COR networks are symmetric and optimally fault tolerant. We present a closed-form expression of the diameter and optimal one-to-one routing algorithm for any member of the COR family. We also discuss the suitability of the COR networks as the interconnection network of scalable parallel computers.



Author(s):  
Boumedyen Boussaid ◽  
Christophe Aubrun ◽  
Mohamed Abdelkrim ◽  
Mohamed Gayed

Performance evaluation based fault tolerant control with actuator saturation avoidanceIn this paper, a new approach regarding a reconfigured system is proposed to improve the performance of an active fault tolerant control system. The system performance is evaluated with an intelligent index of performance. The reconfiguration mechanism is based on a model predictive controller and reference trajectory management techniques. When an actuator fault occurs in the system, a new degraded reference trajectory is generated and the controller calculates new admissible controls. A constraint set and cost function are established to avoid actuator saturation and reduce the control energy spent in closed loop dynamics. The effectiveness of the proposed method is illustrated using a hydrothermal system subject to actuator faults and constraints on actuator dynamic ranges.



Author(s):  
Yakubu Abdul-Wahab Nawusu ◽  
Alhassan Abdul-Barik ◽  
Salifu Abdul-Mumin

Transmission errors are commonplace in communication systems. Wireless sensor networks like many other communication systems are susceptible to various forms of errors arising from sheer noise, heat and interference in sensor circuitry and from other forms of distortions. Research efforts in WSN have attempted to guarantee reliable and accurate data transmission from a target environment in the midst of these unwanted exposures. Many techniques have appeared and employed over the years to deal with the issue of transmission errors in communication systems. In this paper we present a new approach for single and multiple error control in WSN relying on the inherent fault tolerant feature of the Redundant Residue Number System. As an off shoot of Residue Number System, RRNS's fault tolerant capabilities help in building robust systems required for reliable data transmission in WSN systems. The Chinese Remainder Theorem and the Manhattan Distance Heuristics are used during the integer recovery process when detecting and correcting error digit(s) in a transmitted data. The proposed method performs considerably better in terms of data retrieval time than similar approaches by needing a smaller number of iterations to recover an originally transmitted data from its erroneous form. The approach in this work is also less computationally intensive compared to recent techniques during the error correction steps. Evidence of utility of the technique is illustrated in numerical examples.



Sign in / Sign up

Export Citation Format

Share Document