Status of 500kV Low Emittance Electron Gun Test Facility for a Compact X-ray Free Electron Laser at Paul Scherrer Institute

Author(s):  
Martin Paraliev ◽  
Christopher Gough ◽  
Sladjana Ivkovic
2021 ◽  
Vol 11 (22) ◽  
pp. 10768
Author(s):  
Ye Chen ◽  
Frank Brinker ◽  
Winfried Decking ◽  
Matthias Scholz ◽  
Lutz Winkelmann

Sub-ångström working regime refers to a working state of free-electron lasers which allows the generation of hard X-rays at a photon wavelength of 1 ångström and below, that is, a photon energy of 12.5 keV and above. It is demonstrated that the accelerators of the European X-ray Free-Electron Laser can provide highly energetic electron beams of up to 17.5 GeV. Along with long variable-gap undulators, the facility offers superior conditions for exploring self-amplified spontaneous emission (SASE) in the sub-ångström regime. However, the overall FEL performance relies quantitatively on achievable electron beam qualities through a kilometers-long accelerator beamline. Low-emittance electron beam production and the associated start-to-end beam physics thus becomes a prerequisite to dig in the potentials of SASE performance towards higher photon energies. In this article, we present the obtained results on electron beam qualities produced with different accelerating gradients of 40 MV/m–56 MV/m at the cathode, as well as the final beam qualities in front of the undulators via start-to-end simulations considering realistic conditions. SASE studies in the sub-ångström regime, using optimized electron beams, are carried out at varied energy levels according to the present state of the facility, that is, a pulsed mode operating with a 10 Hz-repetition 0.65 ms-long bunch train energized to 14 GeV and 17.5 GeV. Millijoule-level SASE intensity is obtained at a photon energy of 25 keV at 14 GeV electron beam energy using a gain length of about 7 m. At 17.5 GeV, half-millijoule lasing is achieved at 40 keV. Lasing at up to 50 keV is demonstrated with pulse energies in the range of a few hundreds and tens of microjoules with existing undulators and currently achievable electron beam qualities.


2021 ◽  
Vol 41 (1) ◽  
pp. 0114006
Author(s):  
赵振堂 Zhao Zhentang ◽  
王东 Wang Dong ◽  
殷立新 Yin Lixin ◽  
方国平 Fang Guoping ◽  
顾强 Gu Qiang ◽  
...  

Instruments ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 45 ◽  
Author(s):  
Riccardo Pompili ◽  
Enrica Chiadroni ◽  
Alessandro Cianchi ◽  
Massimo Ferrario ◽  
Alessandro Gallo ◽  
...  

Following the promising results obtained at the SPARC_LAB test-facility in Frascati (Italy), we have recently submitted a proposal to develop a new facility driven by a plasma accelerator module for extended and user-oriented applications. The new multi-disciplinary user-facility will be equipped with a soft X-ray Free Electron Laser (FEL) operating with energies larger than 1 GeV. This design study is performed to be fully compatible with the EuPRAXIA design study. Here, the latest layout and beam parameters are presented.


2011 ◽  
Vol 131 (2) ◽  
pp. 68-71
Author(s):  
Etsuo FUJIWARA ◽  
Eiichi ANAYAMA ◽  
Yuichiro KATSUTA ◽  
Toshiki IZUTANI ◽  
Daichi OKUHARA ◽  
...  

2014 ◽  
Vol 134 (12) ◽  
pp. 836-839
Author(s):  
Junichi INOUE ◽  
Yuji TANAKA ◽  
Yuki MATSUMOTO ◽  
Kensuke KANDA

Sign in / Sign up

Export Citation Format

Share Document