Instruments
Latest Publications


TOTAL DOCUMENTS

182
(FIVE YEARS 143)

H-INDEX

7
(FIVE YEARS 6)

Published By Mdpi Ag

2410-390x

Instruments ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 5
Author(s):  
Bruno Spataro ◽  
Mostafa Behtouei ◽  
Fabio Cardelli ◽  
Martina Carillo ◽  
Valery Dolgashev ◽  
...  

This communication focuses on the technological developments aiming to show the viability of novel welding techniques [...]


Instruments ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Alexander Yu. Molodozhentsev ◽  
Konstantin O. Kruchinin

The combination of advanced high-power laser technology, new acceleration methods and achievements in undulator development offers the opportunity to build compact, high-brilliance free electron lasers driven by a laser wakefield accelerator. Here, we present a simulation study outlining the main requirements for the laser–plasma-based extreme ultraviolet free electron laser setup with the aim to reach saturation of the photon pulse energy in a single unit of a commercially available undulator with the deflection parameter K0 in the range of 1–1.5. A dedicated electron beam transport strategy that allows control of the electron beam slice parameters, including collective effects, required by the self-amplified spontaneous emission regime is proposed. Finally, a set of coherent photon radiation parameters achievable in the undulator section utilizing the best experimentally demonstrated electron beam parameters are analyzed. As a result, we demonstrate that the ultra-short, few-fs-level pulse of the photon radiation with the wavelength in the extreme ultraviolet range can be obtained with the peak brilliance of ∼7×1028 photons/pulse/mm2/mrad2/0.1%bw.


Instruments ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Sergio J. C. do Carmo ◽  
Francisco Alves

The present work describes a method to determine excitation function curves and, therefore, cross-sections, making use of the irradiation of liquid targets at distinct energies in a biomedical cyclotron. The method relies on the derivative of experimentally measured thick target yield curves to determine the corresponding excitation function curves. The technique is presented as a valid and practical alternative to the commonly used activation method combined with the stack monitor technique, whose implementation in liquid targets offers practical difficulties. The working principle is exemplified by presenting the results obtained for the clinically relevant 68Zn(p,n)68Ga and the 64Zn(p,α)61Cu nuclear reactions, obtained though the irradiation of liquid targets containing dissolved natural zinc.


Instruments ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Lucía Castillo García ◽  
Evangelos Leonidas Gkougkousis ◽  
Chiara Grieco ◽  
Sebastian Grinstein

Low Gain Avalanche Detectors (LGADs) are n-on-p silicon sensors with an extra doped p-layer below the n-p junction which provides signal amplification. The moderate gain of these sensors, together with the relatively thin active region, provides excellent timing performance for Minimum Ionizing Particles (MIPs). To mitigate the effect of pile-up during the High-Luminosity Large Hadron Collider (HL-LHC) era, both ATLAS and CMS experiments will install new detectors, the High-Granularity Timing Detector (HGTD) and the End-Cap Timing Layer (ETL), that rely on the LGAD technology. A full characterization of LGAD sensors fabricated by Centro Nacional de Microelectrónica (CNM), before and after neutron irradiation up to 1015 neq/cm2, is presented. Sensors produced in 100 mm Si-on-Si wafers and doped with boron and gallium, and also enriched with carbon, are studied. The results include their electrical characterization (I-V, C-V), bias voltage stability and performance studies with the Transient Current Technique (TCT) and a Sr-90 radioactive source setup.


Instruments ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Andrea Alimenti ◽  
Kostiantyn Torokhtii ◽  
Daniele Di Gioacchino ◽  
Claudio Gatti ◽  
Enrico Silva ◽  
...  

Axions, hypothetical particles theorised to solve the strong CP problem, are presently being considered as strong candidates for cold dark matter constituents. The signal power of resonant-based axion detectors, known as haloscopes, is directly proportional to their quality factor Q. In this paper, the impact of the use of superconductors on the performances of haloscopes is studied by evaluating the obtainable Q. In particular, the surface resistance Rs of NbTi, Nb3Sn, YBa2Cu3O7−δ, and FeSe0.5Te0.5 is computed in the frequency, magnetic field, and temperature ranges of interest, starting from the measured vortex motion complex resistivity and the screening lengths of these materials. From Rs, the quality factor Q of a cylindrical haloscope with copper conical bases and a superconductive lateral wall, operating with the TM010 mode, is evaluated and used to perform a comparison of the performances of the different materials. Both YBa2Cu3O7−δ and FeSe0.5Te0.5 are shown to improve the measurement sensitivity by almost an order of magnitude, with respect to a whole Cu cavity, while NbTi is shown to be suitable only at lower frequencies (<10 GHz). Nb3Sn can provide an intermediate improvement of the whole spectrum of interest.


Instruments ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 40
Author(s):  
Simone Michele Mazza

PIONEER is a next-generation experiment to measure the charged pion branching ratios to electrons vs. muons Re/μ=Γπ+→e+ν(γ)Γπ+→μ+ν(γ) and pion beta decay (Pib) π+→π0eν. The pion to muon decay (π→μ→e) has four orders of magnitude higher probability than the pion to electron decay (π→eν). To achieve the necessary branching-ratio precision it is crucial to suppress the π→μ→e energy spectrum that overlaps with the low energy tail of π→eν. A high granularity active target (ATAR) is being designed to suppress the muon decay background sufficiently so that this tail can be directly measured. In addition, ATAR will provide detailed 4D tracking information to separate the energy deposits of the pion decay products in both position and time. This will suppress other significant systematic uncertainties (pulse pile-up, decay in flight of slow pions) to <0.01%, allowing the overall uncertainty in to be reduced to O (0.01%). The chosen technology for the ATAR is Low Gain Avalanche Detector (LGAD). These are thin silicon detectors (down to 50 μm in thickness or less) with moderate internal signal amplification and great time resolution. To achieve a 100% active region several emerging technologies are being evaluated, such as AC-LGADs and TI-LGADs. A dynamic range from MiP (positron) to several MeV (pion/muon) of deposited charge is expected, the detection and separation of close-by hits in such a wide dynamic range will be a main challenge. Furthermore, the compactness and the requirement of low inactive material of the ATAR present challenges for the readout system, forcing the amplifier chip and digitizer to be positioned away from the active region.


Instruments ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 39
Author(s):  
Lucio Anderlini ◽  
Marco Bellini ◽  
Chiara Corsi ◽  
Stefano Lagomarsino ◽  
Chiara Lucarelli ◽  
...  

Tracking detectors at future high luminosity hadron colliders are expected to be able to stand unprecedented levels of radiation as well as to efficiently reconstruct a huge number of tracks and primary vertices. To face the challenges posed by the radiation damage, new extremely radiation hard materials and sensor designs will be needed, while the track and vertex reconstruction problem can be significantly mitigated by the introduction of detectors with excellent timing capabilities. Indeed, the time coordinate provides extremely powerful information to disentangle overlapping tracks and hits in the harsh hadronic collision environment. Diamond 3D pixel sensors optimised for timing applications provide an appealing solution to the above problems as the 3D geometry enhances the already outstanding radiation hardness and allows to exploit the excellent timing properties of diamond. We report here the first full timing characterisation of 3D diamond sensors fabricated by electrode laser graphitisation in Florence. Results from a 270MeV pion beam test of a first prototype and from tests with a β source on a recently fabricated 55×55μm2 pitch sensor are discussed. First results on sensor simulation are also presented.


Instruments ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 37
Author(s):  
Ram M. Narayanan ◽  
Michael J. Harner ◽  
John R. Jendzurski ◽  
Nicholas G. Paulter

Through-wall and through-barrier motion-sensing systems are becoming increasingly important tools to locate humans concealed behind barriers and under rubble. The sensing performance of these systems is best determined with appropriately designed calibration targets, which are ones that can emulate human motion. The effectiveness of various dynamic calibration targets that emulate human respiration, heart rate, and other body motions were analyzed. Moreover, these targets should be amenable to field deployment and not manifest angular or orientation dependences. The three targets examined in this thesis possess spherical polyhedral geometries. Spherical geometries were selected due to their isotropic radar cross-sectional characteristics, which provide for consistent radar returns independent of the orientation of the radar transceiver relative to the test target. The aspect-independence of a sphere allows for more accurate and repeatable calibration of a radar than using a nonspherical calibration artifact. In addition, the radar cross section (RCS) for scattering spheres is well known and can be calculated using far-field approximations. For Doppler radar testing, it is desired to apply these calibration advantages to a dynamically expanding-and-contracting sphere-like device that can emulate motions of the human body. Monostatic RCS simulations at 3.6 GHz were documented for each geometry. The results provide a visual way of representing the effectiveness of each design as a dynamic calibration target for human detection purposes.


Instruments ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 38
Author(s):  
Franziska Treffert ◽  
Chandra B. Curry ◽  
Todd Ditmire ◽  
Griffin D. Glenn ◽  
Hernan J. Quevedo ◽  
...  

High-flux, high-repetition-rate neutron sources are of interest in studying neutron-induced damage processes in materials relevant to fusion, ultimately guiding designs for future fusion reactors. Existing and upcoming petawatt laser systems show great potential to fulfill this need. Here, we present a platform for producing laser-driven neutron beams based on a high-repetition-rate cryogenic liquid jet target and an adaptable stacked lithium and beryllium converter. Selected ion and neutron diagnostics enable monitoring of the key parameters of both beams. A first single-shot proof-of-principle experiment successfully implemented the presented platform at the Texas Petawatt Laser facility, achieving efficient generation of a forward-directed neutron beam. This work lays the foundation for future high-repetition-rate experiments towards pulsed, high-flux, fast neutron sources for radiation-induced effect studies relevant for fusion science and applications that require neutron beams with short pulse duration.


Instruments ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 36
Author(s):  
Volker Ziemann

We describe a framework to assemble permanent-magnet cubes in 3D-printed frames to construct dipole, quadrupole, and solenoid magnets, whose field, in the absence of iron, can be calculated analytically in three spatial dimensions. Rotating closely spaced dipoles and quadrupoles in opposite directions allows us to adjust the integrated strength of a multipole. The contributions of unwanted harmonics were calculated and found to be moderate. We then combined multiple magnets to construct beam-line modules: a chicane, a triplet cell, and a solenoid focusing system.


Sign in / Sign up

Export Citation Format

Share Document